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SOIf XFINITE INTEGRALS OCAJRRING IN HA\IELOCK'S WORK ON THE WAVE 
RESISTANCE OF SHIPS 

H. Ba teman 

1. In his study of the effect of varying draught Havelock requires 
the values of integrals of the form 

o 

(1) 12 e-R8eC2+ cos2^+ 1 f dt 
o 

and the first two sections of this note are devoted to a study of such 
integrals. Ihe substitution tan2+- t gives the equivalent expression 

(2) 2g e /3G-+(1 + )-s-2 e t dt = M G ,l3tZ e-+ W 1,, i t [(i) 

where w is Whittaker's confluent hypergeometric function . The asymp 

. . . 4 

tOtlC expans ion ot thls 1S 

(3) % >1 (v/,8) e F (1/, m + 1/2; - 1) 20 N 

and this divergent series is also the asymptotic expansion of the 
integral 

(4) r(l/2)e Je++(l+N)-te-t dt = l/0ve-j£jB W 1 1 ++++ 0). 
2Xr(4) o 

The two integrals (2 ) and (4) are equivalent on account of Kummer' s 
relation 5 

(5) Z ,gC°sb l (1 + s) e ZS ds - Z t0 s l (1 + s)-b e ZS ds 
r(b) F(a) 

which was indicaded by his expression 

(6) rr(-b) zb F (b; b-a+.l; Z) + rr( )) Za F (a; a-b+ 1; Z) 

for either side of (5). This expression requires modification when a 
and b differ by an integer and so an alternative proof of (5) may 
be usefu' 6. 
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2 H . BATE MAN 

2. It will be assumed that a and b have values for which the integrals 
(S) have a maning. Then with a suitable choice of c the equation may 
be wri tten in the form 

(7) r(a)F(C-a) r e ^Zt t-¢-b-l dt Je zs Sb-l (1 + S)-ad = o o 
oo a 

r(b)r(c-b) Jo e Zttc a ldt 4 e ZSsa |(l + -bd 

Now, Pareto7 has poBnted out that if- 

F(Z) = J e Ztt(t)dt and G(iC) = r e Ztg(t)dt then 
o o 

m 
F(Z) G(Z) f e Zth (t')dt 

o 

wherc h(t) is expressed by the convolution integral 

h ( t ) = .l f( t-u )g( u )du, 

so that the relation (7) holds if 

F(a)F(ca)t(t-u)C b 1ub 1(1+u) du = C(b)F(c-b); (t-u)C-a-1ua-1(1+u) bdu, 

i e if 2F (a,b;c;-t) = 2 t (h,a;c;-t) 

Kusner's relation (S) is thus ixnplied by the wellknown roperty of the 
interchangeability of the parameters of the first ltind in Euler's 
hypergeornetric fu.nction . 
3. In his second approximation for the case of a circular cylinder in 
a uniform stream lo Havelock used. the two integrals 

7T 

(8) Lf - CCoS(2TX - ktan<5)dX 

7r (k > O) 
(9) MT - j2sin(2TX - ktan+)dX 

for which vallles were given for T = O, 1, 2, 3* 4, 5, 6. The rest of 
this note contains come observations ors these integrals. 

Ee integral Lf has been studied elsewhere 11. A general expression 
for positive integral ralues of T is 

(10) Lr = (-)T lve-klFl (1-T;2;2k) 

w8-lile Lo has Laplace's value !/rre t. 

This content downloaded from 202.28.191.34 on Sat, 02 Jan 2016 18:09:35 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


3 INTEGRALS IN HAVELOCK ' S WAVE RESISTANCE OF SHIPS 

7r 

(11) llSo=-sin(ktan@)d6=-J lin kt dt=-l/e Ii(et)-etti(e t)} 

whe re 
li(eZ) = Jo zldu 5 7 + log Z + 1.1! 2.2! 3@3! 

is the logarithmic integral ( y is Euler's constant). en use is made 
of a recent result obtained by Copson t2, Mo carl be expressed in the 
£orm 
(12) M= shk log k - E r( k ) + (2n + 2), 

where Q (z) = d lOgS(z). Havelock's expressian for Mf is of the type 
dz 

(13) Mr = 1 Lrti(ek) + RSr 1(k) 
7T 

where B 1 is a polynomial of degree z-1 . There wil l also he an 
expanslon 

(14) MT 7T Lr loF k +n; An n! 

in which the coefficeents An have values which are readily found by 
means of a recurrence forrnu la . 

In the case of the function LT it is known that 13 
(15) 2kL,r = 2vrL,r + (T - 1) LT-1 + (T + 1) LT41 
The corresponding relation for MT seems to be 

(16) 2kM. + 2 = 2rMf + (T- 1) MT 1 + (r + 1) MT+1* 

This relation may be checked Wit}l the aid of Havelock' s; values 
(17) Ro 1, R1 = k, R2 = 3(1 - 4k + 2k2), R3 = 3k(5 - 5k + k2). 

lhe coefficients An may also be derived with the aid of Archibald's 
solution of the confluent hypergeometric equation in the logarithmic 
case 14 in the following manner. The differential equations satisfied 
by L T ansl MT a re 

(18) k d LT + (ST - k)L = O k d Mr + (ST - k)MT 1. 
> dk 

The first of these equations may be reduced to the equation of the 
confluent hypergeometric function by the substitution Lr = kc-^ Z. The 
second equation has a particular integral of the type 

1 + a k2 + a k3 + . . . 
2r 2 2! 3 3! 
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4 H . BA TE MAN 

when z / 0, and the general sollltion is obtained hy aclding the teneral 
sollltion of the equation for LT . U'llen T is a negative integer, -s say, 
the reecurrence relations (15) and (16) indicate that LT = O and 

(19) MT = lli(e t)Ls(-k) - Rs 1 (-k) (T = -s). 

It should be noticed that both LT and MT satisfy the relations 

(20) 2k = (s - 1)M7. g (7 + l)Mr + 1 

dM dM 
(21 ) 77 + dk+ = MSr Mr+ 1 

FOOTN9TES 
1 Edited from a manuscript found amonS the papers of the late 

Professor Harry Bateman. The original manuscrlpt has been followed as 
closely as possible, but,some parts harre been re-written, and a few 
references added A. Erdelyi. 

2 T. H. Havelock, Proc. Royal Soc. London A 108 (1925) 582-591 
3 E. T. Whittaker and G.N. Watson, Modern Analysis § 16.12 
4 Modern Analysis § 16.3 
5 E. E. Kummer, J. fr Math. 17 (1837) 228-242 
6 In Havelock's paper m is an integer. 
7 V. Pareto, J. fur Math. 110 (1892) 290-323 
8 This type of integral may, perhaps, be named forJohann Bernoulli 

on account of its occurrence in the problems of the tautochrone and 
brachistochrone. A special integral of this type occurred, however, in 
the work of John Wallis on the quadrature of the circle. Related special 
integrals, known as binomial integrals, occurred also in the work of 
Newton, Leibniz, and EuIer. Integrals of the type under consideration 
occur also in the expression for the remainder in Taylor's theorem and 
in the Liouville-Riemann expression for a fractional integral. The use 
of integrals of Bernoulli's type in mathematical physics dates chiefly 
from the time of Poisson who used such integrals in the theory of 
hysteresis and other phenomena. Poisson was, I think, also the first to 
use the method of the lnverse Laplace transformation in the solution of 
a physical problem (Cf. J. de l'Ecole Polytechnique t. 12 cah. 19 ( 1815) 
1-162). 

9 Note by A.E. E.G.C. Poole (Quart. J. of Math. Oxford 8 )1938) 
230-233) has shown that the property in question of the hypergeometric 
function can be established by integrations by parts when a and b differ 
by an inteZer, and the same is true of Kummer's relation (5). If b - a 
is a positlve integer, n say, the left hand side of (5) is 

(() ) J dden s (l+s) ds = r(Z ) J e dnn {s (l+s) } ds} 

by n successive inteS;rations by parts, and this is identical with the 
rlght hand side of ( ). 

10 T. H. Harrelock, Proc. Royal Soc. London A 115 t1926) 268-280 
11 H. Bateman, Trans. Amer. Mathc Soc. 33 ( 1931) 817-831 Proc. 

Nat. Ac. Sciences Washington 12 (1931) 689--690 1 t 
12 * E. T. Copson Proc. Camb. Phil. Soc. 37 (1941) 102-104 
13 H. EBateman, ;.c See also M. Lerch, J. fWr Math. 130 (1405) 

47-65, N.G. Shabde, Bull. Calcutta Math. Soc. 24 (1932) 109-134 N.A 
Shas'tri Phil. Mag. (7) 20 (1935) 468-478 J. Indian Math. Soc:. tN.S.j 
3 (1938) 8-18, 152-154, 155-163. 

14 W. J. Archibald, Phil. Mag. (7) 26 (1938) 415-419. 
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 Sr. M. Philip Steele and V. O. McBrien

 FOREWORD

 litany teachers of mathematics like to introduce the concept of a
 Group at an early stage of the student's training so that, in more
 aderanced study, there will be less confusion about this important
 idea. Che coon method which appeals to many freshmen is a consider-

 ation of the roots of unity. llaus, the equation x3 = 1 has three roots,

 namely 1,-21 + i 2 and-2- i 42; or, as they are usually called,

 1, x, and w2. Ihis set of three numbers harre the interesting property

 that the product of any two numbers of the set always gives a member

 of the set. For example, co.X2 = 1 and co2.a)2 = @. This set of three

 is a3aid to be closed under the operation of multiplication. Ihis prop-

 erty of closure is a fundamental property of a mathematical group.
 The operation under which a group is closed need not be ordinary mlllti-

 plication. For instance, in the following paper the operation of sub-

 s titution is used frequently.
 We may obtain a geometrical configuration of the group of three

 numbers 1, x, and ' by plotting them in the ordinary complex plane.
 The three nwnbers all lie on a circle of radius equal to unity and the

 vectors to these numbers are 120° apart. Then if 02 is multiplied

 by X we see that this is equivalent to rotating the rector to c1)2 through

 120° since ce)2- = 1. However, when the number 1 of the set is multi-

 plied by any member of the set, that member remains unchanged. The
 number 1 is said to be the identity element of the group. In every
 group there is an identity element.

 In the following paper we shall consider some configurations of

 certain groups in a manner somewhat analagous to the way described
 a bove for the three cube roots of uni ty . The methods used are the
 methods of inrersiere geometry; an inrersiere property being a geometrical

 property which is unchanged, or inrariant, with respect to a set of
 transformations called direct circular transformations. An example of
 such a transformation is the reflection in the X-axis, z' = z, where
 z = x yi is the conjugate of z. We use the reflection in high school

 geometry when we turn a triangle ourer on an edge. The groups under
 discussion are the so-called finite inrersiere groups which are formed

 by the products of certain inrersiere transformations. The method

 demonstrates how the plane may be divided into a set of regions by

 a system of circles. No attempt is made in this paper to giere a detail-

 UNDER CERTA I N GROUPS
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 6  SR. M. PHILIP STEELE AND V. O. MCBRIEN

 ed discussion of the nature of the inversive plane but it is to be

 n oted that, throughout the paper, a straight line is considered to

 be a special case of a circle with an infinite radius.

 1. Introduction. I^he purpose of this paper is to show how certain

 curves, invariant- under the generating transformations of a dihedral

 group of order 2n, divide the real intrersive plane into 2n fundamental
 regions. The method and the results following seem to contribute to

 the classical method of building up finite inlrersilre groups by

 forming the products of a set of transformations . [ 1, p. 75.J X

 We define here the term fundamental region in the same way as in

 the theory of the complex variable. Taking any point of the complex

 plane of Riemann, or the real intrersive plane, and applying to it all

 the subst itutions of the grollp, we obtain a set of eqllivalent points .

 Each fundamental region of the group contains one point, and not more

 than one point, which is equivalent with respect to the group of

 substitutions. [2, p. 290.] In what follows we shall have a finite

 nwnber of regions; the system of curves by which t}e plane is divided

 into fundamentalEregions is defined as the basic configuration of the

 p lane under the group.

 2. The Generating Transformations. In considering the generatirlg

 transformations below we make use of the one-to-one correspondence
 .

 between the real inversive geometry of the plane and the complex

 p rojecti-e geometry of the line . That is, to the complex points

 z = x + yi of the line correspond the real points z = x + yi of the

 p lane, and to the complex proj ective transformations of the line

 correspond the real, direct, circular transformations of the plane.

 [ 3, p. 395]

 For generators of the group we employ R(A) A and S(A) = s - A

 .

 where r, s, and:A are,; in general, of the form a + bi. Both of these

 generators are of period two, and it has been shown [4, p. 4243 that

 the group generated by them is the dihedral rotation group whose order

 i s twice the order of the product (SR) h It has also been proved

 [5, p. 80] that only four distinct groups can be generated by R, S,

 when r and s are rational numbers, but other groups of even order

 may be generated when r and; s are complex numbers.:

 In the real inversive plane, the transformations are R, z = r,
 : z

 and S, z s z'. Tluey are not projective but are direct circular

 transformations, or Mobius transformations [3, p. 384]. Both R and S

 a re the prodllct of two inversions . The conditions on r and s, so that

 the group generated by R and S be of finite order has been discussed

 [1, pp. 80-87 and 6, pp. 3-7], and it has been shown that to generate

 a finite group, the ratio Sr must be real and satisfy a certain poly-

 n omial equation .

 3* Czarves of Basic Configuration for G2n. If, for the pair of
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 7 BASIC CONFIGURATIONS OF THE PLANE

 generators R(k) and S(A), s O, then (5R) is of order two, i.e. (SR)2 =
 identity, and we obtain the only Abelian rotation group G4. Ihe trans-

 formations in the real inversive plane are then R, z = -z and S,

 The elements of the group are A, A'- A- -A, or in terms of the

 generators, I, R, RS 8 SR, S. We may regard every point in the plane

 as affected by each operation of the group. Ihat is, each operation
 affects a transformation of all the points of the plane. However,

 certain values of A yield les8 than four distinct points under the

 operations of the group. Thus, by setting A equal to each of the ather

 elements we obtain the three pairs of invariant dyads , tri, (0,) ,
 1

 and iirE. By an invariant dyad is meant that each element is left

 unchanged or transformed into the other one under the operations of

 the group.

 From the invariant sets of points we may easily build up the basic

 configuration of the plane under G4. Since we are in the real inver-

 sive plane we shall regard all straight lines as proper circles. a e

 circular transformations R and S send circles into circles. Further,

 R, ZE s zr, sends the point O into X and vice versa and S, z' -z,

 sends circles into circles by reflecting them in the origin. Ihe in-

 variant dyad (0,) lies on the join of ir5, namely:

 1 1 '

 r Ez rPE = O

 Likewise, (0,) lies on the join of iir5, namely:

 1 1

 r Zz + rrz = O

 1 1

 Also, the four points, ir5, iir5, lie on the circle with center at

 O and radius s IJ7W| s namely:

 zz s (rr)

 All applications of the G4 leave these three circles invariant. Hence

 we call the three curves

 1 1

 r Ez - r?E = O

 1 1 '

 r Zz + r!E = O

 1

 zz = (rr)
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 8  SR. M. PHILIP STEELE AND V. O. MCBRIEN

 the basic configuration of the plane under G4.

 We harre already nentioned that r may be real. This is clear, since
 if r = 1, weharre ;

 z z

 Z s -2

 ZZ s 1

 The transformation z' X rz merely stretches the plane from the origin
 in the ratio |r| rl and rotates the plane through an angie equal to

 the amplitude of r. Thus, our basic configuration is changed only in

 size and orientation with respect to the aocis of reals. Figure 1 shows

 t he basic configuration for real r.

 y 4 '

 = - ) fMs

 Figure 1  Figure 2

 Under the Go there are four fundamental regions cut out by the

 basic configuration because if we apply the transformations R, RS,

 and S to a point A in the plane we obtain a-set of equiralent points.

 In this sense any two adjacent sections of the eight sections cut

 out by the configuration form a fundamental region. T}lat there are

 e ight sections suggests the well known property that this group is
 a subgroup of the inversiere gr-oup of; the rectangle or of the rhombic

 f our point [ 1, pp . 82 -83] .

 When S2 = r, the group generated is of order 8iX since (SR)3 1.

 The basic configuration of this group has been discussed [7, p. 243.
 This group is isomorphic with the well-knomm cross ratio group. The

 generators are R(A) 5 sA and S(A) = s - A, where s ,/ O. The elements

 are, respectively, I, RS, 9, S, R5R = 3RS, R, or A, ( s A) (sA A s ),
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 BASIC CONFIGURATIONS OF THE PLANE  9

 s - A, (&, sA Setting Aequal to each of the elements of the

 of the G6 we obtain the inrariant sets of conjugate points, (-s,2s,),

 (s,0,0), (-sx2,-sse)) where co2 + tx + 1 - O.
 The only invariant line under the group is the join of O and z,

 sz - sz = O

 Both invariant triads lie on this line. The other curves of the con-
 figuration are: the circle with center at O and radius Isl, the sircle
 with center at s and radius I s l, and the join of (- sco2 , -si) . These
 circles are:

 _ _

 zz = ss

 (z - s ) (z - s ) = ss

 sz - sz - ss = O

 I f s 1, we have the invariant system of (n + 1 ) circles (Fig. 2 )

 zz = 1

 z + z = 1

 (z - 1) (z - 1) = 1

 z - z = O

 The twelve sections cut out by the configuration suggests the property
 that it consists of those operations of the inversive group, G1 2 s
 which are formed by an even number of inversions.

 The manner in which the basic configuration is built up is similar
 f or the groups of order eight and twelve .
 * To generate the octic group, G8, we have, when S2 5 2r, (RS)4 = 1.

 Hence, the generators are R(A) = 2s-A and S(A) = s - A, or, in the

 * * .

 lnverslve. plane.

 * R: z' s _ S: z ' = s - z * 2z

 The elements of the G8 are A, s A, 2-A (2s 2A) 2A

 (S2 _ 2s )), ((s gA)), (2(&) ) or I, S, R, SR, RS, h;RS, RSRS, RSR.

 There are just ten poinacs in the plane which are invariant under the
 G8 (i.c., they are transformed into less than 8 distinct points by

 G8). These are composed of the two sets of four conjugates (s,r,O,),
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 10  SR. M. PHILIP STEELE AND V. O. MCBRIEN

 tiS 4, s(1 i i2i)g, and the pair of conjugates s(l2 i). The two sets

 of four conjugate points lie on the join of O and s, the only intariant 2

 line in the real inversive plane under G8. The equation of the line (circle) is - :
 sz - sz = O

 Ihe join of the conjugate pair s(l 2 i) is

 sz + sz ss s o

 This line passes through s2-, one of the other invariant points.

 As in the G6, the invariant points which lie onthe only invariant
 line are related by pairs to the points not on the invariant line,;
 s(l2i t>. Thus, the circle on O and s and radius 2|s| passes through

 < 12ini). Ihe equatlon of this circle is

 : (Z -2)(Z s) = (ss)

 Likewise the pair of circles on is /22 and s(l i /22) with radii equal

 to /2 Isl alse pass through the above pair. The equations of these
 , .

 circles ure re:spectively: -
 : x

 zz = ss

 and

 (z - s)(z - s) = -ss 2

 The invariant line (the join of O and 2)' along with n (in this

 case, four)circles of the coaxialXsystex of circles withfaxis as
 the join of s(l2* i)0are invariant under all the operations °f GB.

 We thus have a basic configuration of the plane under G8 consisting
 of the system of circles:

 s z - sz = O

 sz + sz - ss = 9
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 ll - -

 (z - s) (z - s ) = ss

 2 2 4

 Zz _ s s

 2

 (z - s) (Z - s ) = ss

 2

 The basic configuration is shown in Fig. 3 where the walue of s
 is taken to be on the axis of reals (in this case we let s equal two

 for convenience). There are eight fundamental regions, the basic con-
 figuration cutting out sixteen sections in the plane.

 Figure 3

 If S2 = 3r then (RS)6 - 1, we obtain the dihedral rotation group,

 G12 with elements As s As s3A, (3 s 3A)' (3s&3A s ). (3AsA )'

 (2A- s2) (3sA- s2) usA- 2s2) 12sA- s2) (sA- s2) (2s2- 3sA)
 (3A- s) (6A - 3s) ' (6A- 3s) ' (3A- 2s) ' (3;A- 2s)' (3s 3A)

 or I, S, R, SR, RS, RSR, RSRS, RSRSR, SRSRSR = RSRSRS, SRSRS, SRSR,

 SRS. The transformations are z' = s and z' = s z, both being the

 products of a pair of inversions. f

 The invariant elements consist of the invariant dyad 12 i is

 and the two sets of six conjugates (O,o,s,S-t2sts) (is /3,s i s

 s i s /3 )

 The only invariant line under G12 is the join-of O and s

 4-l
 6
 -

 3

 3'
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 12  SR . M . PHI LI P STEELE AND V . O. MCBRIEN

 which line contains all the points of two sets of six conjugates which
 are invariant under the operations of the G,2. Again we have a system
 of co-axial circles with axis as the join of the invariant pair
 (S2 i is t which has the equation

 sz sz ss s o

 As xn the group of orders six and eight it is easily verified that
 this line passes through s2-. .

 The circle on [2 i s t which passes through the invariant dyad

 [2 i is t has for its center 2 and radius 46 gsl Its equation is
 (z _ s )(z _ s ) = ss

 2 2 12

 We have also the pair of invariant circIes on (O, 23S, and (S3, s),
 respectively, which pass through the invariant dyad

 (z _ s) (z _ s) . _^

 (Z _ 2S)(z _ 2S) = 4Ss

 The pair of circles on is /33 and (s i s /33) with centers at O and

 s also belong to the coaxial invariant system.-Ihey are, respectively,

 [Z - s t-[Z - s t = SU3

 [Z - iS + 5 t [Z - (S + S /t) = 2ss 1 + t .

 Ihus, the real inversive plane is divided into 12 fundamental
 regions by the basic configuration under ffi 2 consisting of the invariant
 set of (n + l) circl-es (Fig. 4)

 sz sz = O ffi

 sz * sz ss = O

 (Z 2)( 2 12
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 BAS T C CON F I GURAT I ON S OF THE PLANE  13

 (z - s) (z - s) - ss

 3 3 9

 _ 2s)(Z _ 2s) s 4ss

 3 3 9

 t z - s /33] F - s /a] - ss

 ( z - ( s + s /33g' F - F + s /3 t] = 2ss [1 + /33 t

 tf\ _

 Fi gu re 4

 Ihis rnethod of finding the basic configuration of the real inversive

 p lane is perfectly general for al 1 dihedral rotation groups, for al 1
 such groups may be represented as a group of subtraction and dierision

 when Sr may be irrational [ S, p. 85 and 6, p. 4] . For example, the

 dihedral Glo has a basic configuration in the real inrersiere plane,

 2
 but in this case s r is irrational . Furthermore, the geometry of the

 configuration leads to the suggestion that some of the ineariant points
 a re notable points of regular n -gens .

 RE FERENCES

 1. F. Morley and F. V. Morley, Inversive Geosetry, Ginn (1933) pp. 75-86

 2. J. HarkneRs and F. Morley, In troduction to the Thcory of Analy ti c

 Functions, MacMillan,. (1898), p. 290

 3. W. C. Graustein, In troduction to Higher Geozetry, MacMillan (1930),

 pp. 376-403
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 4 .s G. A. lSiller, "On the Groups Generated by Two Operators", Bull.

 Amer. Math. Soc., sol . 7 ( 1901) .

 5 . , " Groups of Subtraction and Diœrision", Quart. J.

 Math., sol . 37 ( 1906 ) , pp. 80-87

 6. E. J. Finan, "Ofi Groups of Subtraction and Diœrision", Amer. Math.

 Monthly, sol . 48 ( 1941 ), pp. 3-7 .

 7. Sr. M. Philip Steele, A Geosetric Interpretation and Soxc Applica-

 t ions of the Dihedral Group, G6 . Catholic University of America Press,

 ( 1943), pp. 24-29.
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COLLEGIATE ARTICLES 
Graduate Training not required for Reading 

ON THE SQUARES OF SOME TRIANGULAR NUMBERS 

Pedro A. Piza 

Since ancient times the following theorem has been known: 
The square of the triangular number of order x is equal to the sum 

o f the first x cubes . 
The expression for this classic theorem is 

(X(X + 1)]2 - > a 3 
t 2 J a=l 

which can easily be proved by induction upon adding (x + 1)3 to each 
s ide of the equation . 

I have found the following related theorem, the proof of which is 
the object of this note: 

The square of the triangular number of order (X2 + x) is equal 
to twice the sum of the first x cubes, plus fire times the sum 
of the first x fifth powers, yalus twice the su.= of the first x 
s even th powe rs . 

Ee equation expressing this theorem is 

[(X2 + X) (x2 + x + 1)]2 = 2 2 a3 + 5 2 a5 + 2 i a7 = 2 a3 . ( 1) 

2 a51 a=l a=l a=l 

Before attempting a proof of ( 1 ) we shal 1 establish the fol lowing 
general relation: 

X2 + X ) n >: ( 2 n ) g 2 n + 1 - 2 c ( 2 ) 
2 c=l a=l 

ao 

When x = 1, 5 aB = 1 for all values of m. Hence 
a= 1 

2n _ 2 ( 2 c - 1 ) = 2n 1, 
2 cs 1 

which is a known property of binomial coefficients. 
Suppose that (2) is true when x = y 1, y > 1, so that 

y _ 1 

b - l)nyn (y2 _ y)n = E (2c - 1 ) E a2n+l 2c 
2 2 c-l a= 1 

Add the identi ty 
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(y2 + y jn _ 
(y2 _ y )n 

- E (2c - 1 jy2n+l-2c 
c= 

1 

t o obtain 

(y2 + y)n 

2 

= E (2c 1)E atn+l-2¢ c= 1 a-l 

which completes the proof of (2) for all values of x and n, by mathe- 
matical induction. 

For n = 2, 3, and 4, we have by. (2) 

(X2 + x)2 2 > a3 

2 a= 1 

(X2 + x)3 - 3 2 a5 
2 a=l 

(X2 + x)4 = 4 y a7 
2 a= 1 

x 

+ 2 a3 
a 1 

x 

+ 4 E a5 
a- 1 

Ihe first menAber of (1) can be written 

[( 2 + ) 2 + (X2 + X)]2 (X2 + X)4 + (X2 + X)3 + (X + X) 

4 4 2 4 

There fore we wri te 

(X2+ X)4 = 2 > a7 + 2 y a5 
4 a=l a= 1 

x 

E a3 
a - l 

(x2 + x)3 = 3 > a5+ 
2 a= 1 

. ( x2 + x ) 2 _ > a3 

4 ; a-l 
Arld adding the above three equations-we obtain: 

2 x x 

= 2 5 a3 + 5 2 aS 
a= 1 a= 1 

x 

+ 2 2 a7. 
a 

1 

Q. E. D. 

[(X2' + X)(X2 + X + 1)g 
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SOME EXAMPLES I LLUSTRAT I NG CONT I NU I TY 

AND D I FFERENT I AB I L I TY 

Cordon Raisbeck 
FOREWORD 

The concepts of continuity and differentiabi-lity of a real function 
of a single real variable are not generally understood even by people 
whose daily work brings them into contact with calculus. 

Let us first review the definitions of continuity and differenti- 
ability. A function f(x) of a single reat variable x is said to be 
continuous at a point xO if for every number e > O there exists a 
number s > O such that 

(1) |f(x) - f(xO)|-< e for every x such that |x - xo| < 8 

An equivalent definition is this: f(x) is continuous at xO if 

(2) lim f(x) f(xo ) 
x-x 

A funotion f(x) is said to have a derivative at the point xO if 

(3) lim f(x + 8) f(x) 
s-o 8 

exists, and in that case the derivative is equal to the above limit. 
A function is said to be continuous or to have a der,ivative in 

an interval if it is continuous or has a derivative at every point 
of the interval. 

It would defeat the purpose of this article to give a rough idea 
or a description in words of what these definitions mean, since the 
principal examples to be shown are designed to illustrate cases 
where the rouRh ideas fail. 

Introduction. Discontinuities are usually,classified in three 
classes: removable discontinuities, simple discontinuities, and 
essential discontinuities. A function f(x) is said to have a remov- 
able discontinuity at xO if 

(4) lim f(x) = a / f(xo) 
o 

As an example of such a function we may take 

(5) f(x) s lim 2v s 1 if x t ° 
n^ O if x s O 

which has a remorable discontinuity at x O. Such a discontinuity 

is called removable because it can be removed by redefining f(x) 
at xO so that f(xo) s lim f(x) 

o 

eThe author i8 noW a Mesber of the Teahaical Staff at the Bell Tele- 
phone Laboratories. 
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18 GORDON RA I SBECK 

A function f(x) has a simple dircontlnuity at xO if the following conditions exist: 
(6) lim f(x) " a 

x " x -o 
o 7 

. 

and 

(?) lim f(x) " b 
s_-s fo 

o f 

but a / b. We say x xO + O-if x xO in such a manner that x > xet g 

f and x xO O if x xO in such a-way that x < xO. Equation 6 defines the left-hand limit of f(x) at xO, snd equation 7 defines the right- hand limit of f(x) at xO. An example of a function with a simplT 
discontinuity is the postage required-on first-class mail considered as a function of weight. Here 

f(x) - .03 0 < x < 1 
f(x) w .06 1 < x < 2 

and so forth. Here 
(8) - lim f(x) = .03 x-t-o S 

but 

(9) lim f(x) = .06 
x-1 +o 

and the function is discontinuous at x = 1. 0 A function is said to have an essential discontinuity at xO if either the right-hand or the left-hand limit as x approaches xO does . 

. not exist. An examplef of such a function is 
: 

: 
1 

(10) fAx)= sin x s / 0 
=; 0 Xe 5 0 

. 
. Here neither the right-hand nor the left-hand limit exists.0 In this paper will bF shourn several examples of functions whose beharrior is startling and seems paradoxical in the light of popular conceptions of continuity and differentiability. Functz-ons of Unusual Bchavfior. 0 Let 

( 11) f(x) s 1 x rationaXl 
= 0 x irrational. 

f 0 D : 
I: For the benefit of those who believe that this function i8 excessively artiflcial, it may be pointed out that 
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CONTINUITY AND DIFFERENTIABILITY 19 

(12) f(x) s lim lim [cos (^!ox)] "_a n-@ 

It i8 easy to see that 

(13) lim f(x) xa 

does not exist for any a; hence f(x) has an essential discontinuity 
everywhere. Furthermore, this function has no derivative, because 
a function cannot have a derivative at a point where it is discon- 
tinuous. 

The next illustration is a function which is discontinuous for 
every rational value of the argument, but which has a derivative for 
some (necessarily irrational) salues. We assume the following lemma: 
Lexxal If x is a rational number q- and a is a quadratic surd there 
is a positive number k depending on a but not on p and q such that 

| a - x| > k 
q 

for all x. 
Let f(x) be the function defined thus: 

(14) f(x) = 1 if x = Pq reduced to lowest terms and q is positive 
q 

- O if x is irrational. 

If we recall that irrational numbers exist as close as we please 
to any rational number, it follows that f(x) is not continuous for 
any rational value of x. Cb the other hand, if we let xO be a quadratic 
surd, then 

(15) 8_0 8 ( S 3Xo 

exists. For if 

(16) x + s = p 

(17) s s q - xO 

(18) 181 > k 
q 

by lemma, and 

(19) q > /i 

Hardy and Wright, Thcory of Nu crs, Th. 188, p. 157 
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There fore 

(20) if(xo + ° fZx )1 7 

since f(xo) s 0. Hence 

tf(Xo + ) f(X)| < lim 1 < Aim /8 ' ° 

by 19 and 20. If on the other hand xO + s is irrational then the 

1 imi t 21 is also equal to 0. Eerefore- 

( 22 ) ( = 0 i f xO is any quadratic surd . 

o 

oActually, the points at which f(x) has a derivative are not ex- 

ceptional, but on the contrary the points at which f is not differ- 

entiable form a very thin set compared to the set of points where 

it is differentiable. A proof of this statement, in fact, an exact 

description of what i t means, is beyond the scope of the present 

a rtic le . 
Ihe rlext example is an example due to van der Waerden1 of a function 

which is continuous but has no derivative anywhere. We shall build 

up this function as an infinite series of functiolls defined as follows: 

Let fO (x ) be the distance from x co the nearest integer. Let 

fl (x) be the distance from x to the nearsst fraction of the forr3 

lPo. In general let fn(x) be the distance from x to the nearest fractia 

o f the forxn 10wg . Analytically, 

(23) t"(x) = min |x lonl 

where p takesV all integer values. Obviously gn(x) has a period 1l, 

rises to a maximum of 2lonw and has a derivative of i1 except lor 

values of x of the form 2 Plonw where it has cusps. Observe that if 

(xl, x2) is an interval in which fn(x) has no;cusps, 

( 24) f"(X2 ) fn(X1 ) = i(x2 xt ) 

1B. L. ran der Waerden, Ein cinfaches Bcsspicl ctner nichtdifffr 

cnzicr bar stetigen Function, tlJath. Zei tschrift, 32, 1930 
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Now consider 

( 25) £ f (x) 
n2 t n 

For any x 

(26) § fn(X)§ - 2* 10 

Hence the series 25 converges uniformly and we may say 

a 

(27) f(x) 2 2 fn (x) 

Since the series 25 conrerges uniformly, f(x) is continuous. 
Let us suppose for a moment that f(x) has a derivative, i.e., that 

(28) Aim f(X + 8 ) - f(x) 
-o s 

exists. TEen if we take any sequence of numbers 81, 820 . . . ' sn' . . . 

such that 

(29) lim Sn = ° 
n _0 

it will also be true that 

(30) lim f(x + Sn) f(x) n-a) sn 

will exist also, and be equal to 28. We shall now find such a se- 
qw nce 8s, 82t a Sna . . for which the limit 30 does not exist. 

Let us suppose that 0 < x < 1. Divide the interval (0,1) into 

2v10" equal intervals, with endpoints at the points lon XWe may say 

(31) P < x < P @ l 

where p is an integer. Notice that the interval [2 Pl0ff P2 lo is a 

region inside which fn(x), fn_1(x), ..., f(x), and fo(x) have no 
cuspR . 

Now consider the two points x -+ 10 ^ tand x - lO-"-t. One of 
these points is in the above interval. If the former is in the in- 

terval, let sn ' 10 ff 1. Otherwise, let sn = 1° ff 1. Note that 

lim s = ° 
n- n 
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Let us return to 

(32) f(x + 8) f(x) |_0 [f(x + 8 ) f"|(x)] 

Let s = Sn and divide the sum into two parts thus: 

"E0 [f^(x + Sn ) f|(x)] E -[f||(x + Sn) f||(x)] 
_ + 

sn sn 

By equation 24, every term of the first sum is iSns and because of 
the periodicity of f(x) every term of the second sum is zero. Hence 

(33) f bn ) f(x) E ; 
sn "-o 

It is not hard to see that 33 is an even inte8er if n is odd and an odd integer if n is even. Hence 33 does not approach a limit. Hence by the previous discussion, flx) does not have a derivative. It might seem that the cause for the non-differentiability of van der Waerden's function is the presence of cusps on the functions fn(x) which might tend to produce concentrations of cusps on f(x). 
This is not the true cause, however, for Weierstrass' function 

ao 

( 34) f (x) - E bncos (an7ox) 
n=o 

where a is an odd integer and ab > 1, is not differentiable anywhere, and di-ffers from van der Waerden's function chiefly in that it uses sinusoidal waves instead of sawtooth waves. On the other hand, 

( 35) f( x) = E fn (x) nso n. 

has CUSp$ wherever any of the functions fn (x) has a cusp, but is differentiable at all other points. 

Massachusetts Institute of Technology 
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 C. D. Smith

 Profit from advertising is of intere23t to any business operation.

 A statistical approach to the problem may be based on the assumption
 that adrertising expense is justified only when the increase in net

 profit from sales is greater than aderertising cost. he many rari-

 ables in our economic system make it rery difficult to treat separate

 causes of a giren erent. iI. V. Robertsl established a case in point
 by computlng correlations for a set of factors that should influence

 adrertising. He obtained relatively snxall ralues for simple correl-

 ations and partial correlations. In conclusion he points out that
 one may expect very little information from correlation methods.
 Other studies harre been published which seek to compare aderertising

 techniques by use of multiple regression coefficients. In a recent

 report by Stephan2, History of the Uses of Modern Sampling Proced-
 ures', has no reference to use of sample desiF in advertising re-

 search. The purpose of this paper is to gire a sample approach tc

 the matter of advertising cost.

 To test the value of adrertisinB by measuring gain in a controled
 experiment one may proceed as follows. Select area A to include a

 sufficiently large nur of towns. For eacb town in A select a sample
 of prospectire stores which ordinarily stock a product of type P.
 For each town select the sample as follosrs.

 1. Select as center block the one with the largest nuriber of stores

 of the required type. Choose one at random for the sample. From the

 zone of stores adjacent to the center block choose one at random
 of required type.

 2 . Continue the selection from zones adj acent to the preceding zone

 until the outside area has no block with more than one store of
 requi red type . Se lect one at random from this outside area .

 3. Proceed in like manner from town to town until the sample contains
 at least one hundred stores.

 Begin the experiment by placing product P in each sample store
 and list the name without conment in the usual storevide adrertising

 space. Calculate net profit from sale of P over a given period. Now
 begin special advertisements featuring P and sell for a Biven periodX
 Increase the special adrertising cost at successire periods. Let the

 cumulative cost of advertising at the end of a given period be Xi,

 the corresponding net profit be Zit and the advertising value Vi be

 given by the formula Vi = Zi Xi. In due time the ralue of V will

 1. The Journsl of Busi1less, University of Chicsgo. Vol. 22, No. 3,
 July 1947.

 2 . Journal American Statis tical Association. Vol . 43, No. 241,
 bllarch 19{48.

 A STAT l ST I CAL PROBLEM I N ADVERT I S I NG
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show a deorease compared to the prearious period. This indicates the 
point where the greatest profit has been attained. Although we cannot 
say that v is produced solely by the increase in X, we can say that 
X should not increase beyond the point which maximizes V. 

Nste in conclusion that a basic ralue of V was esdablished be- 
fore ralues of X were assigned. In this way causes apart from X harre 
been removed to this extent from the final ralue of V. If some other 
factor is belieared to increaee with X, that factor should be checked 
ourer the sample of stores for a sufficient period. We may say that 
the X which gives the maximum salue of V is a signal beyond which 
one should not spend. 

Unirersity, Alabama 

A COMPARISON OF- THE UNITED STATES RULE WITH 
THE MERCHANTI S RULE FOR COMPUTING THE 

MATUR I TY VALUE OF A NOTE ON WH I CH 
PART I AL PAYMENTS HAVE BEEN MADE 

Joseph Barnett, Jr 
FORE WORD 

. 

When partial payments are made cn a note before the maturity date 
there are at least two ways to compute the amount due the holder of 
the note when it is due. These are desipated as the United States 
Rule and the Merchant's Rule. The rule tobbe used usually depends 
upon an agreement between the parties concerned at the time the note 
is given. However, the United States Rule is based on a decision of 
the United States Supreme Court to the effect that it is not legal 
to charge compound interest on a debt. It is the purpose of this 
paper to show that for notes harring large face values, the difference 
betweeII the maturity ralues computed by the two methods may be large. 

The United States Rule may be stated as follows: 
Simple interest is computed on the note from the time it was iven 

to the time of the first payment by the use of compound time. It the 
payment is equal to or greater than the interest, it is subtracted 
from the 8um of the face of the note and the interest. Interest i8 
coDlputed £or the t periods between successive payments on the rerainders 
resulting after subtracting each payment trom the sum of principal 
and int¢rest due at the time it was made and the process continued 
until the time of aturity of the note. the result, so obtained, is 
t he a tur i ty ara luo o f the no te . 
13ut if the payment at any tsme is less than the interest, the interest 
is not added to the principal nor the payments subtracted until the 
time at which the sum of the payments not having been subtracted is 

show a deorease compared to the prearious period. This indicates the 
point where the greatest profit has been attained. Although we cannot 
say that v is produced solely by the increase in X, we can say that 
X should not increase beyond the point which maximizes V. 

Nste in conclusion that a basic ralue of V was esdablished be- 
fore ralues of X were assigned. In this way causes apart from X harre 
been removed to this extent from the final ralue of V. If some other 
factor is belieared to increaee with X, that factor should be checked 
ourer the sample of stores for a sufficient period. We may say that 
the X which gives the maximum salue of V is a signal beyond which 
one should not spend. 
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When partial payments are made cn a note before the maturity date 
there are at least two ways to compute the amount due the holder of 
the note when it is due. These are desipated as the United States 
Rule and the Merchant's Rule. The rule tobbe used usually depends 
upon an agreement between the parties concerned at the time the note 
is given. However, the United States Rule is based on a decision of 
the United States Supreme Court to the effect that it is not legal 
to charge compound interest on a debt. It is the purpose of this 
paper to show that for notes harring large face values, the difference 
betweeII the maturity ralues computed by the two methods may be large. 

The United States Rule may be stated as follows: 
Simple interest is computed on the note from the time it was iven 

to the time of the first payment by the use of compound time. It the 
payment is equal to or greater than the interest, it is subtracted 
from the 8um of the face of the note and the interest. Interest i8 
coDlputed £or the t periods between successive payments on the rerainders 
resulting after subtracting each payment trom the sum of principal 
and int¢rest due at the time it was made and the process continued 
until the time of aturity of the note. the result, so obtained, is 
t he a tur i ty ara luo o f the no te . 
13ut if the payment at any tsme is less than the interest, the interest 
is not added to the principal nor the payments subtracted until the 
time at which the sum of the payments not having been subtracted is 
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greater than or at least equal to the sum of the interests not having 
been added..Then the sum of the interests is added to the principal 
and the sum of the payments subtracted. Then interest is computed 
on the remainder as aforesaid. 

In order to compare the two methods, I shall alter the statement of 
the Merchant's Rule so as to show more clearly the difference of the 
two methods, and still obtain the same results by its use as those 
obtained by using it in its usual form. Ihe altered Merchant's Rule 
may be stated as follows: 

Compute the simple interest using cospount tive on the face of the 
note from the time it was given to the tive of the first paytent. 
From the face of the note subtract the first payment. Compute the 
interests for the tize between successive Paytents on the remainders 
of the face of the note after subtractinZ the payments when they were 
made. Continue this process until the tle of maturity of the note. 
Then the sum of the interests hating accrued at that time i8 added 
to the residue of the face of the note. The sum is the maturity talue 
of the note. 
Let it be observed that in the case of the Merchant's Fule no inter- 
est i8 added before all the payments have been made, and that in this 
fact lies the difference in the results obtained by the two methods. 

Suppose we use the Merchant's Rule in a problem in which p = the 
face of the note; r = the rate of interest; pl, P2, P3J *** Pn = the 
lst, 2nd, 3rd, ... and nth payments, respectively; il, i2, i3, ... in = 
the interest computed for the 1st, 2nd, 3rd, ... and nth periods, 
respectively; tl , t2, t3, . . . , tn the time between payments., re- 
spectively. Hence the maturity of the note is 

( 1) A P p p p3 * * * Pn + i 1 + i2 + i3 n 

However, if we use the United States Rule, and let I1 , I2, I3, ... In 
be the interest computed for the lst, 2nd, 3rd, ... nth periods re- 
spectively, the maturity value will be 

(2) A' e P P1 P2 P3 *** p + I1 + I2 + I3 + ... + I . 

If equation (1) is subtracted from equation (2), we have an expression 
for the difference in the maturity values by-the two methods: 

(3) A' - A = I1 - il + I2 i2 + I3 i3 + *** + In in 

And since I1 = Prtl, il s Prtl; I2 2 (P + I1 P1 )rt2, i2 s (P P1 )rt2; 

I3 = (P + I1 + I2 P1 P2 )rt3 

(P P1 P2)rt3 + (I1 + I2)rt3, 

i3 (P - P1 - P2)rt3; *r; 
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In 5 (P + I1 + I2 + .** +- In-l P1 - P2 ***-Pn-l)rtn 

-(P P1 P2 ** Pn-l)rtn + (IX + I2+ ** In_1)rt^, 

i s (P P1 P2 * * * Pn-l )rtn s 

(4) A Z A s Ilrt2 + (I,: + I2)rt3 + (I, + I2 + I3),t4 + 

+ (II + I2 + . . . In_, )rtn . 

In order to take care of the case in which the interest is greater 
than the paymenes let the rth interest be greater than the rth pay- 
ment. We compute the interest on fthe remainder after the (r l)th 
payment has been subtracted up to the tixne at which the sum of the 
payments not having been subtracted equals or exceeds this interest. 
Then compute the interest on the jbalance as aforesaid. Ee maturity 
salue in this case is 

A' - P + I1 + I2 + S Ir-l + *** In_Z+l - P, - P2 - Pn 

in which " i8 the number of payments after the (r - l)th up to the 
time at which the sum of the payments not having been subtracted 
equals or exceeds the interest not having been added. 

For the trierial case in which r is zero, t-is zero, orDboth are 
zero, A' = A; for r and t equalSto any positive salue, howearer small, 
Pc be made sufficieatly great to make A' - A as large as we -please. 
If, for exarnple, r = 0.1%, tt = 1 day, and tZ = 2 days, and P = 

S360x180xl,000,000,0OO, since I1rt2 Pr2tlt2, the first part of the 
di fference ( 4) 

A' - A = (S360)(180)x1,000,000,000(.001)2 1 1 

or A' - A S1000. Howearer, it-should be remarked that in the cases 
of practical importance, the differences in the maturity ralues 
computed by the two methods are insignificant. 

Oklahoma A. and M.: College 
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Edi ted by 

H. V. Craig 

This department will present comments on papers previously pub- 
lished in the MATHEMATICS MAGAZINE, lists of new books, and book 
reviets. 

In order that errors may be corrected, results extended, a i inter- 
esting aspects further illuminated, comments on published papers in 
all departments are intited. 

Communications intended for this department should be sent in dup- 
licate to H. V. Craig, Department of Applied Mathematics, University 
of Texas, Austin 12, Texas. 

Number Theory and its History, by Oystein Ore, New York, Mc(;raw-Hill 
( 1948) 370 pages, S4.50 

This book deals wi th the principal ideas of elementary number 
theory in the order of their historical development, beginning with 
the counting processes of sarrages, and ending with Gauss' theory of 
the ruler and compass construction of the regular heptakaidecagon. 
As history, it is far more interesting than the usual elementary 
historical text, since the author explains the mathematical ideas 
whose dearelopment he is tracing in sufficient detail so that the 
reader can grasp their significance. Considered as a text on elementary 
number theory, the space given to historical treatment precludes the 
inclusion of much material usually considered essential. For example, 
there is no account of the quadratic reciprocity law, continued frac- 
t ions, numerical functions and their inversion, quadratic forms, 
Bernoui 11 i numbers . 

These ommissions are unfortunate of course, but deliberate.Prof- 
essor Ore has adopted a rather novel viewpoint for a mathematical 
author; he has assumed both the existence of other acdessible books 
on his subject, and the existence of readers of sufficient intelligence 
and maturity to refer to these boolcs if they should desire more inform- 
ation. 

The sitrongest feature of Ore's 'Number Theory' is that it has 
R omething fresh to say about almost every subj ect it treats . These 
vubjectv range from historical topicr such as recent discoveries 
in Chaldean trigonometry to Axel Ihue's beautiful proof of Fermat's 
theorem on the repreventation of primes as sums of two squares. There 
iv a sketch of the basic ideas of lattice theory and up-to-date in- 
formation on methodr of factoring large numbers. The treatment of 
congruencev is very full and clear. 

The book rhould be of interest to amateurs in the theory of numbers, 
teacherv and prorpective teacherv of mathematics. Although it is not 
a formal text book, it could very well be used for a 'survey' course 

CURRENT PAPERS AND BOOKS 
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for non-mathematicians or for a teacher's trainlng course, particularly if the instructor would supplement it slightly. The book is lucidly and entertainingly written. Professor Ore has a quiet humor which is in refreshing contrast to the labored facetious- ness which many recent authors of elementary surveys have felt bound to impose upon themselves, and upon their readers. 

Morgan:Ward 

Solid Geozetry. By J. S. Frame, McGraw-Hill Book Co., 1948, 19 plus 339 pages. $3.50. 

The phases of solid geomeitry which are primarily emphasized in this text are solid mensuration, and the drawing of figures. The concept of a proof, though included in the text, is relegated to a position of minor importan-ce. In fact many of the proofs are left as exercises for the student, and thereby could be worked either by the student, or the teacherJ ar omitted. The book is divided into four parts of ten chapters each. The headings of the various parts are Linear and Angular Measurement in Space, Solid Mensurations The Sphere and Solids of Revolution, and Projections and Maps. The material covered in the first twenty five chapters could be said to contain the material covered in the customary short course in this subject. The remaining chapters could be used for special reports, or for additional content for a longer course in Solid Geometry. 
In addition to tWe traditional solid geometry which is included in this text, one finds an introduction to the study of vectors, the introduction of the cosine oftan angle as a projection factor, chapters on the celestial and terrestial sphere, and axfew properties of the conic sections which are developed synthetically when the plane sections of cones and cylinders are studied. Much space is devoted to and many rules are given for the drawing of the projections of space figures. 

At the end of each chapter is a list of oral exercises which should prove stimulating to the superior student. TMere are also lists of problems for written work, most of which involve either numerical computation or the drawing of a specified figure. Throughout the text many situations are described, which involve statements which to the sophisticated reader demand proof. Also, certain terminology is occasionally used, such as additive measure, or linear space, which might cause difficulty to the immature student. For those who want a text in solid geometry-with a minimum of proof, and a great deal ofXnumerical computation and drawing of 
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figures, this book should prove to be a satisfactory text. For those 
who expect a book on Solid Geometry to emphasize postulates, axioms, 
and synthetic proofs, which traditionally occur in a course on this 
subject, this work would probably not meet with their approval. 

R. G. Sanger 

SQ I id Ana ty t ic Geoxe try . By Adrian Albert, McGraw-Hill Co., 9 plus 
162 pages. S3.00. 

In this book an attempt i8 made to develop some of the concepts 
of Solid Analytic Geometry by means of vectors and matrix theory. 
Thus, utilizing the concept of a sector, certain formulas involving 
planes and lines can be developed in a neat manner, and utilizing 
matrices, the problems involving transformation of coordinates can 
be related to certain phases of matrix theory. 

The text i8 very tersely written, and additional illustratlve 
examples and figures could be used to good advantage in many places. 
There is at least one place where an algebraic equation is broken 
at the end of a page, and at least one place where a short matrix 
equation is broken at the end of the line. Such things, together 
with the inevitable misprints which occur in the first printing of 
any work, do not make the book easy reading 

There are nine chapters in the book, the first five of which include 
material on planes, lines, and quadric surfaces in standard position; 
material traditionally included in a first course in this subject. 
The sixth chapter is on matrix theory, and the seventh deals with 
the problem of rotation of axis and classification of quadric surfaces. 
The last two chapters deal with spherical coordinates and the elements 
of projective geometry. 

Ihe main obiection to this work is not that it is concisely written, 
but that much is omitted which one would expect to appear in such 
a book. Some of these omissions are noted in the following paragraphs. 

Nowhere in the preface or in the text is there any indication 
what mathematical background a person should have before attempting 
to read this book with understanding. 

In the first two sections vectors,and the ideas of linear independ- 
ence and dependence are introduced, but practically no indication 
is made of the geometric or physical significance of a vector, and 
no algebraic criterion is given or implied whereby a student could 
tell whether or not two vectors were linearly dependent. In the next 
section a dot or inner product is introduced and an expression is 
gisen for the cosine of the angle between two vectors, yet no geo- 
metric interpretation of this expression is made until some sections 
later. Nowhere is the sector cross product introduced, nor are any 
geometric properties given which can be concisely formulated utilizing 
this concept. Also, in the development of equations of tangent planes 
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to surfaces, no use is made of vectorsa 
Most of the exercises in the text are very formal in nature, in 

general, either consisting of substituting in forsule atready devel- 
oped, or of working out a parallel theory tor a 31ightly different 
case. There are no problems involving the concept of a locus, and 
none involving a geometrical analy$is of a particular situation. 

Figures illustrating the geometric significance of the theory 
are rare. There are no figures in the chapters headed Surfaces and 

Curves, Spheres, Rotations of Axis and Applications,- and Ele nts 

of Projective Geometry. Ihere is anly one figure in the chapter dealing 
with planes. 

When equations of lines in symmetric form are given, the number 
zero appears in some denominators, and, though there immediately 
follow equivalent relations which are stated as valid (without too 
much explanation), the effect on the averaBe student of seeing such 
things in print leaves much to be desired. 

In defining the angle between two planes, it is s-tated that such 
an angle is not uniquely defined if either plane passes through the 
origin. This is consistent with the definitions in thxe text, but is 
not with the geometrical situation, yet no attempt is made to clarify 

* s 

thls polnt 
Nowhere is the concept of determinant used in the main portion 

of the text, though they are discussed in the latter part of the 
sixth chapter. lEus, the concise detenminantal formulae for the equation 
of a plane through three non-collinear points, or spheres through 
four non-coplanar points are omitted. 

In the study of the reduction of the general ewation of a quadric 
surface to canonical form, matrices are used and the problem is assoc- 
iated with that of reduction of quadratic forms to canonical types. 
Nowhere is the rank of a matrix used, or are the invariants, assoc- 
iated with the equation of the quadric under translations or rotations, 
with the exception of the roots of the characteristic equation, 
mentioned. This is to be regretted, since the concept of rank of a 
matrix can be advantageously used both in questions of linear depend- 
ence and in the problem of classifying the quadric surfaces in a 
systematsc manner. 

In the chapter on spherical coordinates, the traditional names 
for the coordinates, p, @, + are disgarded. No applications of a 
practical nature are made, though one or two are raguely suggested. 
Similarly, in the chapter on Projective Geometry, projective coor- 
dinates are associated with vector spaces, and projective trans- 
formations with matrices, but there is no indication as to what a 
projective geometry is, or what it might be used for. 

As the book is tersely written, is lacking in illustratiere exarwles, 
and alro lacks figures to aid tho3e who are visually minded, it i8 

doubtful if the average student would gain much by trying to read 
this book independently . 
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In the study of geometry, certain tools, such as vectors, matrices, 
and derivatives, may be used in the development of the geometric 
theory. In this work, there are spots where the stedy of the properties 
of the tools used are definitely emphasized, the geometric aspects 
of the situation being relegated to a secondary position. 

R. G. Sanger 

Coents on and itaons to H. V. Craig's paper 'On Extensors and 
the Lagrangian Equataons of Motion', Vol. XXII No. 5, March-April 
of the Mathesatics Magazine. By C. W. Horton. 

1. Introduction. In a recent paper H. V. Craig has shown how the 
Lagrangian equations of motion may be derived from a simple extensor 
equation relating the primary extensors associated with kinetic and 
and potential energies. His development is confined to conservative 
forces which may be represented by a potential function. Although 
this covers the majority of cases, it is of interest to remove this 
restriction and to inquire if an equally simple basis may be found 
for the equations of motion for non-conservative forces. 

2. The excovariont force function. Suppose that the forces acting 
on the particles in the system may be represented by a covariant tensor 
Qa. TEe sense of the components of Qa are such that they are positive 
when the force is directed along positive xa. Consider the set of 
quantities Qaa( a = 0, 1 ) defined by 

Qo a Qa 
Qt a O (1 ) 

and snquire whether or not they constitute an extensor of range 1. 
The extensor trans formation law 

QPr QaaXpr (2) 
gives, for the case P ' ° 

Qor QOaxOr + Q1 aX°r ( ) 

By equation (1) tl;le Qla are zero so equation (3) reduces to 

Qo r = QO a£0 ar e Q|r = Qr ( 4 ) 
Since Qa is a covariant tensor of order 1. 

When p = 1, equation (2) becomes 
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Q1 r QoaX 1 r Q1 aXl r * ( 5) 

Now X super Oa inf lr vanishes since xaa is a function of only those 

xpr for which p < a. Ee Qla vanishby equation (1), and hence, Qira ° 

Thus it is seen that the Qaa constitute an excovariant extensor of 
r ange . 

3. The heuristic formulation. The heuristic formulation of 
Dr. Craig may now be modified to read: 

(a) The important functions are the kinetic energy T(x,x'), which 
is homogeneolls of degree two in the x"s, and the excovariant force 
function Qaa of range 1. It is assumed that a linear relation between 

the primary extensors associated with T and with the force extensorQaa 

holds along a trajectory. 
(b) The increase of T along a trajectory is equal to QaXa Ihis 

has the simple physical interpretation that the increase in the kinetic 
energy is equal to the work done by the forces. 

(c) Ihe extensor component of functional order two, namely, TOa 

must be present. 
These assumptions lead to an extensor equation of the form 

Taa + AT;aa + BQaa ° (6) 

The rank of equations obtained when a 1 will be satisfied identically 
if A 1 since Tla = T; la. When a = O, one has, since TOa = T; | ' s 

T,la' - T;Oa + BQoa ° 

When this equation is multiplied by x' a, it can be reduced to 

T' + BQOaX'a = 0 

The details of the analysis are gieren in Dr. Craig's paper Asswnption 
(b) requires that B = -1, and, consequently, equation (7) becomes 

T;la T;Oa = QOa = Qa (8) 

which is identical to the form of the Lagrangian equations given by 
Whi ttaker2 
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The University of Texa*5 
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PROBLEMS AND OUEST I ONS 
Edi ted by 

C. G. Jaeger, H. J. Hamilton and Elmer Tolsted 
This department will submit to its readers, for solution, problems 

thich seem to be new, and subject-matter questions of all sorts for 
readers to answer or discuss, questions that may arise in studya 
research or in extra-academic applications. 

Contributions will be published with or without the proposer' 8 
signature, according to the author' 8 instructions . 

Although no solutions or answers will normally be published with 
the of ferings, they should be sent to the editors when known. 

Send all proposals for this depart0ent to the Department of Math- 
ematics, Pomona College, Claremont, California. Contributions must be 
typed and figures drawn in india inl. 

SOLUTIONS 

In addition to those listed in the March-April 1949 issue, the 
following also solved Problem No. 27: G. W. Courter, Baton Ebuge, La.; 
W. R. Talbot, Jefferson City, Mo.; G. B. Knight, ()ak Rid*re, Tenn. 

No. 24. Proposed by C. N. Mills, Normal, Illinois. 

Given the quadratic form x2 - x + N where N = 2, 3, 5, 11, 17, 41. 
When x = 1, 2, ...(N - 1) each of the resulting numbers is prime. 
Are there other values of N? 

D. H. Lehmer has shown that there is at most one other value of N 
and if it exists it exceeds 1,250,000,000. (Sphinx, 1936, pp.212-214). 
This is referred to in Coxeter's edition of 'Rouse Ball' Mathematical 
Recreations and Essays p. 62. 

Leo Moser, Winnipeg, Canada. 

No. 29. Proposed by Norman Anning,Ann Arbor, Michigan. 

Given that n is any positive integer greater than 1, show that the 
1 + y t1 + x n 

curve 1 =01 xJ has th ee and onl three points of inflexion. 

Solution by *. R. Talbot, Jefferson City, Missouri. 
The given equation f(x,y) = O may be written explicitly in y as 

(1 + x)n - (1 - x)n 

Y 

(1 + x)n + (1 - x)n 

In this form it is readily seen that the curve has symmetry with 
respect to (0,0). It is sufficient to consider only x > 0. In terms 
o f logari thms, the given curve f (x, y ) = 0 may be wri tten as 
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1 + y 1 + X 
ln n ln , 

1 - y 1 - x 

so that 

1 _ y2 
1 - X 2 

and 

y" = -2y' (ny - x). 

I f y " = O, then y ' = O and ny - x O . I f y ' = O, then y + 1 and 
from f = O, x - +1. Consider values of x slightly less and greater 
than 1. If n is even, y < 1 for these values of x; so that (1,1) 
is a bend point. If n is odd, y < 1 when O < x < 1, but y > 1 when 
x > 1; so that ( 1, 1 ) is an inf lexion point . By virtue of symmetry 
(-1,-1) is an inflexion point if n is odd. 

It remains to be shown that ny - x = O has precisely three roots 
if n is even and only one root if n is odd. Let g(x) denote the result 
of substi tuting the explicit value of y above into ny - x. Then 
g( x) = O is 

(1 + x)n(n - x) - (1 - x)n(n + x) = O. 

Since g(O) = O, (O, O) is an inflection point. 
Let n be odd. IBen for O x < n, g(x) > O. Dividing g(x) by n and 

allowing n to becomes exceedingly large is equivalent to evaluating 
(1 + x)n - (1 - x)n, which is positive. Then if n is odd, ny - x = O 
has no root other than (0,0). 

Let n be even. We find g(l) > O, g(n) < O indicating a root 
between 1 and n, and from syrr¢netry, one between -1 and -n. If x > n, 
g(x) < O because both (1 + x)n(n - x) and -(1 - x)n(n + x) are negative. 
Then, there is no root beyond x = n (or -r). Whethern isodd or even, 
t here are precisely three points of inflexion . 

Solved also by Leo Moser, Winnipeg, Canada. 

No . 30 . Proposed by Vic tor Thebau a t, Tennie, Sarthe, France . 

Given a circle (O), of center 0, tangent to two rays Ax andAy. 
A variable tangent meets Ax at B and Ay at C. Show that each of two 
sides of the triangle which has the orthocenters of triangles AOB, 
BOC, COA as vertices pass through fixed points, and that the third 
s ide has a conic as i ts enve lope . 
Solution by 0. J. Ramter, Catholic University. 

Let the fixed circle (9) be tangent to BC, CA, AB at A', B', C', 
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respectively, and let the orthocenters of triangles AOB, SC, C)OA be H¢, Ha, Hb respectively. Then Hb and Hc moure on the fixed lines B'O and C'O as side BC envelopes the circle (O). Moreourer HbC and H¢B are each perpendicular to the fixed line OA. Since B and C are corres- ponding points in projectively related ranges of points on Ax and Ay respectierely, it follows that Hb and Hc are corresponding points in projectively related ranges of points on the fixed lines OB' and ()C'. Hence HbHC envelopes a conic which is a hyperbola having OB' and OC' as asynFtotes because the axis of homology for the projectierely related ranges on OB' and OC' is the line at infinity. Now Hb and Hc uniquely determine Ha. Hence VlaVlb cuts Ay in points Y projectively related to Hb. Ncyw when triangle ABG degenerates so that C is at B', B will be at A and Hb will be at B'. Then Y will also be at B'. Hence since B ' is self-corresponding, tlre l ines YtBb will not enzrelope a proper conic; they will pass througll a fixed point, i.e.H H and similarly H H pass through fixed points. When B is at infinity on Ax, A'OC' is a diameter of circle (O), Hb will be at O, and Ha will lie on OC'. Hence the fixed point through which HaUb passes lies on OC'. Wllen C is the point where C'O cuts, Ay, H and tib each lie on Ay. Hence the fixed point is C'. Similarly HaMb passes through B'. 
No. 32. Proposed by VictorThebault, Tennie, Sarthe, France. 

Find al 1 the four-pl ace numbe xs abcd and aecd which are perfect s quare s . 
Solution by W. R. Talbot, Jefferson City, Missouri. Let abcd = m2 and aecd = n2. From m2 _ n2 = 100(b - e), it follows that both m + n and m - n are ezren. If m2 and n2 are different, then 64 < m + n < 198. If b - e = 9, the maximum value of m - n is gieren when a = 1; thus m - n is an earen number less than 11. If R - n = 2,4, or 6, m + n may be 100 or 150. If m - n = 8, m + n = 100 while m - n = 10 does not lead to any solutions. Of the possible values of (m,n), only m - n = 6 and m + n = 150is unacceptable, and the solu- tions are 
(51,49) 2601, 2401 (52,48) 2704, 2304 (53,47) 2809, 2209 (76,74) 5776, 5476 (77,73) 5929, 5329 (54,46) 2916, 2116 Solved also by Leo Moser, Winnipeg, Canada. 
No. 34. Proposed by Victor Thebault, Tennie, Sarthe, France. Find a number of four digits such that its square ends with the 
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36 PROPOSALS 

same four digits in the same order. Show that its cube and its fourth 
power have the same property. 
Solution by Leo Moser? Winnipeg, Canada. 

All powers of 937-6 end in 937:6. 
The theory of automorphic' numbers is well known. It is discussed 

in some detail in Kraitchik, Mathematical Recreations pp. 77-78 where 
it is shown that the following two numbers are automorphic. 

3,740,081,787,109,376 
6,259,918s212,890,625 

Ihe fact that the second of these ends in 0625 disqualifies it as 
a solution to the problem as stated. 

No. 35. Proposed by Vic tor Thebau I , Tennie, Sarthe, France. 

A plane P divides the solume o£ a sphere into two parts V and 8' 
and determines two spherical segments of areas S and S'. If it is 

known that S = k, calculate the ratio V, in terms of k. 

Solution by Leo Moser, Winnipeg, Canada. 

Take the radius of the sphere to be 1 + k and cut it by a plane 
a distance k from the top. The ratio of the areas of the segments will 
then be k: 1, and a simple calculation using the well known formula 

for the volume of a spherical cap, volume = 6(3a2 + h2), yields 

V 2 (3 + k) - k 
V' (3 k + 1 ) 

PROPOSALS 

37. Proposed by Leo Moser, Winnipeg, Canada. 

I would like to propose the following problem. (Suggested by game 
of Russian Billiards). 

Given 5 points in or on a 2 xl rectangle. Show that the smallest 

distance determined between any 2 of them is < 2/2 - /3 and that this 
is the largest number for which the result is true. 

38. Proposed by Leo Moser, Winnipeg, Canada. 

Show that 5 or more great circles on a sphere, no 3 of which are 
concurrent, determine at least one spherical polygon having 5 or more 
sides. 

39. Proposed by Leo Moser, Winnipeg, Canada. 
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37 
(i + l)j+l _ 1 

Let Aij - ( i + 1)! s i 1, 2 ... n, i li 2 i.. n. 1 
Show that the nth order determinant |Aij| 5 1 + 2 + 3 + ... + - 

40. Proposed by Petro A. Piza, San Juan, Puerto Rico. 
Let x be a positive integer and Sn s 1 + 2n + 3n + 4n + ... + xn. 
Prove thewfollowing Pythagorean relations: 

GS 48S + 1)2 s (8S3+ 24Ss)2 + [(4s3+ 12SS) 1] 

(64S9 + 448S11+ 448S13 + 64S15+ 25)2 = 

(160S5 + 160S7 )2 + [ ( 16Ss + 16S7 )2 - 2512 . 

41. Question by Rayxond L . Krueger , Wi ttenberg College. 

I wonder if you can tell me anything about the following problem. 
It was sent to me by a former student and we do not know the original 
source nor can we seem to interpret it correctly. 

3 children: one has lived a diminished evenly even number of years, 
another a number also diminished, but evenly uneven, While a third, 
an augmented number unevenly even. What are the ages of the children? 
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Edited by Joseph Seidlin and C. N. Shuster 

VAR I ETY OF MATHEMAT I CAL EXPER I ENCES* 

Harold E. Bowie 

American International College, benng ehe only coeducational college 
of Arts and Sciences in Springfield, considers its function to be 
that of a Peoples' college. As to mathematics, we require:a year 
of algebra and a year of plane geometry for entrancee Some candidates 
with prospective ability are admitted without these courses and com- 
plete them later in our summer session or elsewhere. 

Those who plan to major in mathematics or one of the natural 
sciences are expected to come to us with at least a third year of 
high school mathematics. We Bive a three semester hour course in 
intermediate algebra £or those who enter with the minimum requirement. 

As we do not require any mathematics on a college level, the two 
courses required for entrance are terminal for the majority of our 
students. 

In the double track plan it is very important, I think, not to 
lose sight of the individual. An early determination as to thether 
one will make a good mathematician is difficult in many cases, both 
for him and his advisers. We have had a number of cases of students 
who came to us with little or no secondary school mathematics who 
majored successfully in the sllWject by doing summer work or staying 
on for a fifth year. 

Without the rather unusual program which A. I. C. has set up to 
take care of such cases, some of our good mathematics people would 
be eliminated. Generally, students of college age dislike to take 
these courses with the younger pupils in the high schools. In using 
the double track or any other plan, provision should always be made 
for ssitches along the way. 

A little fanning of the flame is a good thing for those who show 
natural interest in our subject. Many 3tudents harre been influenced 
to continue their mathematics by the enthusiasm of some teacher. We 
are in a field for which we do not need to apologize and shoult give 
encouragement to those rho show interest in it. lEe world needs them. 

Often the work in hand may be- used as a point of departure for 
digression into the uses, history, and scope of the subject. For 
example, I netrer discuss the ellipse withour saying a little about 
Kepler, NestonF and Einstein. Not everything I say is understood 
fully, erren by myself, but many a good mathematician has started his 
career under the influence of such inspiration. 

Many of my students say that they didn't learn algebra until they 
used it in the calculus. The better students overcome this weakness 
in their background without too much difficulty. The mediocre ones 

Paper read at the spring etinjr of the Conn. Valley Section of tbze Assoc. 
Of Teachers of Math. in New Englana at Suffield, Connecticut, April 23, 1949. 

TEACH I NG OF MATHEMAT I CS 
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40 HAROLD E. BOtIE 

have a hard time. lhe poor student is sunk. Ihese pupils readily adn t 
that one reason for their lack of preparation was that they didn't 
8 tudy. - 

Too hard or too easy standards of marking may cause students to 
stop studying. No student should be given credit in a course until 
he attains a certain minimum of achievement. I have seen many do a 
good job on a course with a second attempt. One pupil who failed in 
every period of plane geometry came back the next year with all A's, 
and is now an excellent teacher of mathematics. 

Lack of variety of experience in high school and early college 
courses is a source of some difficulties. In practice with the Sfour 
fundamental operations, many situations with respect to signs and 
symbols should be included. Zero is a number which confuses most 
students, even when they have reached quite advanced work. This is 
not strange, as zero is involved in the only fundamental operation 
which is undefined. 

Telling the student that division by zero is undefined is not 
sufficient. Sets of exercises should include those involving zero 
terms, factors, numerators, and denominators, so that he may learn 
to readily recognize the impossible situation. He should have experi- 
ences with such expressions as x when x= ° (x 1 ;:J when x 2 2, and 

(x Y ) when x = y. these expressions have no meaning in an ele- 
(x - y) 

mentary sense under the conditions given. 
Upon reading the last paragraph aloud, I found myself saying 'one 

over x' for 'one divided by x'. During my first years of teaching, 
the dean and former head of the department of mathematics at my Alma 
Mater visited our high school on a student recruiting mission. He 
and the professor with him spent the evening at my home. During the 
conversation, which naturally turned to talking shop, he pointed out 
emphatically that one should never say 'over' for 'divided by'.-Ebing 
guilty of this fault myself, I was somewhat embarassed. As a teacher 
I have found thatmany such early habits have to be overcome. 

I still like 'over' for 'divided by' and use it in conversation 
with those of sufficient mathematical maturity not to be confused. 
It is shorter. These short cuts are dangerous with beginning students 
who have not become sufficiently familiar with the symbols involved. 

It is not well, however, for us as teachers to accept ideas be- 
cause they have been printed in 80Ze book or stated by some authority. 

As a part of my graduate work, I was required to visit a class 
in a large city high school. The work in hand was the solution of 
linear equations. The teacher was having a bad time of it. She was 
religiously adhering to an artificial, involved scheme that had been 
presented in a course in the Teaching of Mathematics the preceding 
summer. Too-much time used with a few pupils caused the rest of the 
class to lose interest, and the period ended in confusion with little 
done. She was quite discouraged and asked me what I thought she could 
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41 VARIETY OF MATHEMATICAL EXPERIENCES 

do. I advised her to abandm the idea and return to well-tried methods. 
The scheme was doubtful with any class and impossible with a large 
class. 

Speaking of tried thods reminds me that one o£ our campus weekly 

reporters once asked me what I was going to talk about. Not knowing 
at the time, and wishing to give him some title, I said the first 
thing which occurred to me, which was 'The Double Track Plan'. It 
appeared in print later as 'The Durable Track Plan'. Now I am wondering 
whether this would make a good subject for study. 

Cne of the hurdles which slowsE the calculus student is the handling 
of complex fractions. I seem to remember having read somewhere in 
educational literature that practice ith complex fractions was time 
wasted. Such is not the case. Ihere are many problems in calculus, 
for example, which involvebfractions of various levels of complexity. 
Thus the differentiation of tan xl requires simplification of a fraction 

of medium difficulty, while the differentiation of tan ( 3X 1) pre- 

sents a more challenging situation. 
The average calculus student needs to be skillful with these 

fractions so as not to be diverted from the many new concepts to be 
learned. Practice with various forms of complex fractions should be 
included in the algebra courses and should be repeated at intervals 
throughout the mathematics program. 

Ihese and later considerations would underline the fact that there 
is a minimum of training that is desirable for all mathematics teachers. 
This matter has been given serious attention by the Joint Commission 
of the Mathematical Association of America, Inc., and the National 
Council of Teachers of Mathematics. Their conclusions are found in 
their report on the Place of Mathematics in Secondary Education in 
the Fifteenth Yearbook, issued in 19401. 

lhese recommended requirements in mathematics include a year of 
calculus, a brief introduction to projective and non-Euclidian geo- 
metry, using synthetic methods, advanced algebra, and history of 
mathematics. Recommended requirements in natural science and education 
are also listed as well as further desirable but less critical needs. 
Some of us taught high school mathematics for a time with fair results 
without all of these requirements. Ihere is no doubt, however, that 
we did better work after getting a solid background. 

Ex.periences with the handling of expressions involving a fixed 
constant base and literal exponents are necessary. Students have 
trouble multiplying in such cases as 2"( +1 - 1). Factoring and 
division with such quantities is even more perplexing. Often students 
who have this trouble can handle similar operations with a literal 
base and numerical exponents successfully. Considerable practice 

gFifteenth Yearbools of the National Council of Teachers of A^thematic 
(New YorJ: Bureau of Publications, Teachers College, Columbiz Uni- 
tersity, 1940) pp. 201-202. 
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HAROLD E . BOW I E 42 

with fixed constant base and literal exponents is incidental to the 
usual sets of exercises in mathematical induction. For example, 

prove by mathematical induction that 1 2 + 2.22 + 3.23 + ... + n.2n 

2 + (n - 1)2n+1 where n denotes a positive integer. 
Mathematical induction is hard to teach to high school students 

or college freshmen. Previously gained familiarity with the methods 
of simplification involved still leave enough concepts hard to grasp. 
The understanding of mathematical induction itself requires a variety 
of experiences. The usual set of problems found in most college 
algebras involve a proof requiring the addition of something to both 
sides of an equation and are always true. Problems where some other 
operation is performed on both sides or which are not true may be 

provided by the teacher. 
C. S. Carlson gives six exercises that are true for n 1,2,3,4, 

but fail for n = 5, in the National Mathematics Magazine for Octo- 
ber 19442. 

Ability to insert parentheses where they will be advantageous and 
to remove them when they have served their purpose is indispensable 
to the student. It enables him to free his mind from the details of 
simplification and to concentrate on basic principles until a later 
or final step. It will occur to some that here is the place to learn 

about parentheses.That is, to wait untilnthey are needed. 
It is true that skill will be maintained and increased incident- 

ally at this point. However, the game must not be delayedvery much 
or the whole situation becomes disagreeable to the student. For 
interest to be maintained while a student is integrating sin4S, fer 

example, results must be gotten without being held up for long by 
* - 

S 1C e lssues. 
Simplification of complex expressions with radicals, and fractional 

and negative exponents involved are good preparation for later work. 
Throwing an expression into a good form for differentiation or integ- 

ration often requires a change from radical to exponential form or 
vice versa, or the changing of an expression from numerator to de- 
nominator or the reverse. 

Some of the properties of proportions studied in elementary algebra 
and geometry and then abandoned for so long that they are almost 
entirely forgotten may become incidental to the work of later courses. 
This lapse of time between the last mathematics course taken in high 

school and the beginnigrrof college mathematics and science seems 
to be one of the unsolvied problems of curriculum making. Ihe lapse 
is often one or two years:. Another problem of the curriculum is that 
many who follow mathematics do not get solid geometry because it i8 

not required in the high school and not offered in college. These 
problems arise because many who will go into mathematics and science 
do not know it when they are in secondary school. 

2C. S. Carlso:n, 'Note o:n the Teachin of kSathematical Induction', 
National Mathematics Magazine, Vol. 1%, 19:44. 
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The importance of emphasizing functional relationships has been 
deservedly emphasized in the literatureJ Practice with the symbolism 
as soon as it can be understood is important and should be giren 
renewed attention from time to time . The student of col lege mathe - 
matics needs to be acquainted with the shades of meaning attached 
to f(x), f(a), f(2), ¢>(x), F(x), etc. He should recognize quickly 
whether f(x) is being used to represent a partieular or general 
function by the context. Early familiarity with these symbols will 
free his mind for reasoning in which their significance is incidental. 

Some beginning calculus students will differentiate x2 + a2 to 
obtain 2x + 2a where the context should make it clear that a is a 
constant. They ignore the fact that usually, although not always, 
the first letters of the alphabet are used conventionally to denote 
constants. The difference between an arbitrary constant and a rari- 
able is a rery subtle thlng and requires good explanations by the 
teacher and hard thinking by the student. 

Exercises in which explanations written out in words predominate 
over juggling of symbols are good to promote reasoning. It is not 
uncommon for an entire class to differentiate a number ofa$¢cpre<sions 

y y dv 
correctly and to balk unanimously when asked to show-= -. 

dx dv dx 
It is well known that many of the troubles of mathematics students 

with relatierely difficult theory and problems comes from lack of 
reading ability. The first requirement in the understanding of a 
new bit of theory or a problem is a knowledge of what the words and 
sentences mean. Frequent reading aloud by the student i8 helpful. 
This reading may well replace some of the lecturing by the teacher. 
Well-placed questions should insure a critical attitude and an attempt 
to retain and relate the thought. An easy, informal atmosphere should 
prevail, as one of tenseness may defeat the purpose of this method. 

Plane geometry has fewer and less complex applications than al- 
gebra in the usual undergraduate college courses. It can be more 
readily reviewed as needed. I was surprised, however, in taking 
up the trapezoidal rule with one class, that nobody knew the for- 
mula for the area of a trapezoid and most had forgotten the def- 
inition of this figure. 

Ihe chief value in the study of demonstrative plane geometry 
lies in resultant training in deductive reasoning and consequent 
increase in mathematical maturity. 

Although meaning comes first, students should be ennouraged both 
to reason and to remember important facts. The student who does not 
remember the principal identities of plane trigonometry, for example, 
will have plenty of trouble with integration. 

Cne of my students raised an objection to the fact that I con- 
sistently lettered my triangles A, B, C. A former teacher had sold 
him so completely on the necessity for reasoning that he felt one 
should never use the same lettering twice. Mixing up the letters 
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is a good thing while learning, but uniform lettering is best a-fter 

learning. 
I like the following thought expressed by A. N. Whitehead on 

this matter: 'It is a perfectly erroneous truism, repeated by all 

copy-books and by eminent people when they are making speeches, 

that we should cultivate the habit of thinking of what we are doing. 

The precise opposite is the case. Civilization advances by extending 

the number of operations which we can perform without thinking about 

them.'3 
One of the difficulties involved in providing a variety of mathe- 

matical experiences is lack of time. Time may be saved in some cases 

by the substitution of planned incidental review for the formal 

kind. Sometimes more time than is needed may be used on a topic. 

The time allotted to mathematics may be too short. Work in an- 

alytic geometry, calculus, statistics, and other subjects and topics 

that will be taken in college should not take up time needed to 

establish a good background for those who may go on in mathematics. 

They are more properly material for the second track students who 

will never get a chance to study them again. 

It may be that more could be accomplished in fewer and longer 

periods. We have found this to be true in college freshman mathe- 

matics in summer school courses. The longer periods avoided the 

necessity for starting over again on topics unfinished from the 

preceding period. 
If the textbooks in use do not provide sufficient variety of 

experience, they should be supplemented. Material may be obtained 

from notebooks kept in college courses, from the illustrative prob- 

lems in college textbooks, and from other texts in the subject being 

studied. Older textbooks should not be disregarded as a possible 

source of needed exercises. 
In conclusion, let us say that a good background for later work 

in and application of the mathematics being studied at any parti- 

cular time requires experiences with a variety of situations, that 

the teacher should have had courses beyond those he is teaching 

in order to know what situations are likely to be encountered, and 

that time and materials should be made available for this purposej 

3A. N. Whitehead, Introduction to lWathexatics, (New York: Henry Holt 

and Company, 1939) p. 61. : 

American International Col lege 
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E. T. Bell 

Ihis subject is so extensive, and so intricate, that only a bare 
indication of a few of its simpler ideas can be given here. 

1. Divisibility. Ibe first concern is with the natural numbers, or 
the positive integers, or simply the numbers, 1, 2, 3, 4, , and their 
elementary properties with respect to divisibility. IBe number d divides 
the number n, written d|n, if there is a number q such that n= qd. 
If d|n, n is called a multiple of d. If d|m and d|n, then d|(rm+ sn), 
where r, s are any numbers (as defined above), and this d is called a 
common divisor of m, n. If a|n and b|n, n is called a common multiple 
of a, b. If gln and d|g, then d|n. From these definitions we have those 
of the greatest common divisor (G.C.D.) and least common multiple 
(L.C.M.) of m, n as in school arithmetic, but with a different twist. 
It is not the magnitude aspects that are emphasized but the divisibility 
relations. This is done because it is the procedure that generalizes 
to types of integers other than the numbers 1, 2, 3, 4, , specifically 
to algebraic integers. If g is a common divisor of m, n, and if every 
common divisor of m, n is a divisor of g, then g is the G.C.D. of 
m, n. If h is a common multiple of m, n, and if every common multiple 
of m, n is a multiple of h, then h is the L.C.M. of m, n. If the G.C.D. 
of m, n is 1, m, n are called coprime or relatively prime. A practical 
method for finding the G.C.D. of m, n proceeds from the theorem that 
integers q, r, qz O, O< r< n can be found such that m = qn+ r. The 
product of the G.C.D. and L.C.M. of m, n is mn, so that the L.C.M. is 
known when the G.C.D. is. The properties of these two functions of 
m, n have analogues in the rudiments of the theory of latsices and 
Boolean algebra. 

If p is a number other than 1 whose only divisors are 1 and p, p is 
called prime, or a prime. It is to be noted that number here is still 
natural number. It can be shown that every number other than 1 has at 
least one prime divisor, and that the total number of prime divisors of 
any number is finite. Ihe next, which will not be proved, is less obvious 
than it seems. If the prime p divides the product mn of the numbers m, n 
then p divides at least one of m, n. Ihis is used in proving that there 
is no largest prime. For assume that P is the largest prime. Then the 
product 2v3v5 *v P of all the primes being divisible by each of them, 
the number 2 3v5 *.. P + 1 is divisible by none of them. Hence it is 

THE ELEMENTARY THEORY OF NUMBERS 
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either a prime, or is divisible by a prime greater than P. Either 
possibility contradicts the assumption. This theorem is also stated 
as the number of primes is infinite. 

The fundamental theorem of arithmetic asserts that, apart from 
permutations of the £actors, a number other than 1 is uniquely a product 
of primes. Proof is by what precedes and a contradiction. It follows 
that a number n other than 1 is representable uniquely (up to permu- 
tations) in the form Plal *a pss , where P1} *}* v p5 are different 
primes and al, *v , aS are numbers (natural nuibers). Ihe divisors of 
this n are all the numbers of the form plbl ... psbS , where O < bi < ai} 
i= 1,... ,s; whence it followsimmediately that n has (ai+ l)}** (aS+ l) 
divisors and that their sum is 

plal+l -1 p aS+l -1 

* * * * 

_ 1 _ 1 

P1 Ps 

Another function, +(n), of the divisors of n, called Euler's function 
or the totient of n, is important in the study of divisibility. It is 
defined as the number of numbers that do not exteed n and are prime to 
n, and it is fairly easy to prove that, for nz 1, 

$(n) = n(l-pl ) ... (1-pl ). 

Either by convention or from the definition, $(l) = l. It is a simple 
exercise to prove that the sum of the totients of all the divisors of n 
is equal to n. For example, n = 6; the divisors of 6 are l, 2, 3, 6, 
and $(l) = l, $(2) = l, $13) = 2, $(6) = 2; l + 1 + 2 + 2 = 6. 

By a few obvious changes in the wording, the results of this section 
can be carried over to the set of all integers, ... -4, -3, -2, -l, 
O, 1, 2, 3, 4, ... . The introduction of the negatives and zero is a 
convenience. It can be, and has been, avoided, but at the cost of 
intolerable prolixity. Ihe natural numbers are the positive integers. It 
will be clear in a given context whether an integer, unqualified, is 
restricted to be positive. 

2. Congruence. IBis concept leads to a vast theory having some 
striking analogies with the theory of algebraic equations. IBe integers 
a, b are said to be congruent with respect to the integer modulus m, or 
congruent modulo m, and ehis is written 

a- b mod mJ 

if ml (a- b) or, what is the same, if a, b leaYe the same remainder on 
division by m. Since a non-negative integer must leave precisely one 
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of 0, 1, ... , m- l as remainder on division by m, the set of all 
integers (positivet zero, negative) falls into precisely m mutua]ly 
exclusive sets, called the residue classes modulo m, with respect to 
congruence mod m, all the iblteers in a particular class being congruent 
to one another. These residue classesEmay \ denoted by C0, Cl, ...,C^_1, 
all the integers in Cj being congruent to j mod m. They have an inter- 
esting and simple algebra, which may be left to the curiosity of the 
reader. 

Ihe relation of congruence is symmetric, reflexive, and transitive: 
if a- b mod m, then b _ a mod; m; a- a; if a _ b mod m and b- c mod m, 
then a- c mod m. 1hese are immediate from the definition, and the next 
follow readily. If a_ b mod m and f- g mod m, then aff- bg mod m, 
and af- bg mod m. Ry repeated applications of these, if P(x) is a 
polynomial in x with integer coefficients, a- b mod m implies 
P(a) -- P(b) mod m. 

So far the analogy between elations and congruences is close. In the 
next there is a radical diflerence. 1he equation P(x) = O is completely 
solvable in the field of complex numbers; there may be no integer x such 
that P(x) - O mod m, that is, the congruence may have no roots. The 
analogy is partially restored however in the theorem that if m is prime, 
the congruence cannot have more incongruent (distinct modulo m) roots 
than its degree. Again, a common factor may be cancelled from all the 
coefficients of an equation, while the example 3x - 3y mod 6, or 
3(x- y) -- O mod 6, shows that if 3 is cancelled, then x- y - O mod 2. 
Generally, if ax - ay mod m, and i f d is the G.C.D. of a, m, then 
x - y mod m/d. This is used in the following proof of what has heen 
called a cornerstone of the theory of numbers. 

Let b be an integer prime to the positive integer m; write the 
totient $(m) = s, and denote by bl, *f , b5 the s positive integers 
not exceeding m and prime to m. By a contradiction it is proved that the 
s products bbl, ... , bbS are congruent modulo m, in some order, to 
bl, *d , bS. Hbnce bbl *n- bbS -- bl *s b5 mod m. The product bl bS, 
being prime to m, may be cancelled. Ihus b+(^) -- l mod m. If m is the 
prime p, f(p) = p - 1. Hence if b is not divisible by the prime p, 
bp-l -1 is divisible by p. These two theorem.s and their proofs are 
typical of many in the theory of numbers. Each might be inferred froln 
empirical evidence; each is simply intelligible; the device which yields 
the proofs might - as it did- elude the ingenuity of first-rate mathe- 
maticians for many years. The result p|(bP-1 -1), p prime, b not 
divisible by p, is called Fermat's theorem. It is of importance in 
algebra, for example in the theory of binomial equations. 

Fermat's theorem leads to the subject of primitive roots. It has 
been seen that b+(X) -- 1 mod m £or b prime to m. There may be a positive 
exponent e < $(m) for which be _ 1 mod m. If e is the least exponent for 
which the congruence holds, b is said to appertain to the exponent 
e modulo m. It is quite easy to show that there are exactly t(e) 
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incongruent (distinct modulo p) numbers modulo the prime p appertaining 
to the exponent e, where e is any divisor of p- 1. For e = p- 1, there 
are thus $(p- 1) roots appertaining to the exponent p - 1; these are 
called the primitive roots of p. By a theorem stated earlier concerning 
, E$(e), where e ranges over all the divisors of p - 1, is equal to 
p-l. Ihis may be used in provingthetheorem concerning primitive roots. 

Another application of the result b+(^) 1 mod m is to the solution 
of the congruence ax- b mod m, where, by an earlier theorem, a, m may 
be taken coprime. Ihere is the evident but not very practical solution 
x = ba+(^) l. But the congruence may be replaced by the equivalent 
equation ax+my = b. Euclid's algorithm for the G.C.D. leads to the 
conversion of a rational fraction into a continued fraction. The 
penultimate convergent to the continued fraction for a/m ( or m/al 
whichever is the smaller in absolute value) furnishes a solution of 
ax' +my' = 1; x = bx', y = by' i.s then a solution of the equation. 

A coroll-ary to Fermat's theorem furnishes a necessary and sufficient 
but unusable condition that a given number be prime. For that 
xP I - 1 -- O mod p (prime) has exactly p - 1 incongruent roots mod p, 
namely x = 1, 2, *e , p -1, is the content of Fermatts theorem. Hence, 
identically in x, 

xP l- 1 - (x- l)(x -2) *Pe (x- p+l) mod p. 

For x = O and the prime p odd, this becomes (p-l)!+ 1 -- O mod p, which 
evidently holds also for p = 2. Ihis is Wilson's theorem: for every 
prime p, p divides (p - 1)!+ 1. The converse is readily proved. Hence a 
necessary and sufficient condition that p be prime is that p divide 
(p- 1)!+ 1. Fermat's theorem also has a converse. If there is an integer 
x such that x^-l -- 1 mod m, while for no exponent e< m- 1 is xc - 1 
mod m, then m is prime. This has proved usable in certain tests 
tor prlmes. 

With increase in the degree of congruences the difficulties in solving 
them, or even in deciding whether they have solutions, increases 
rapidly. Many of the questions raised by such problems are still far 
from answered. Congruences of the second degree in one variable (or 
indeterminate) x lead to what Gauss called the gem of arithmetic. To 
exhibit it, some definitions arexnecessary. If r, m are coprime integers 
such that the congruence x2- r mod m has a solution x, r is called a 
quadratic residue of m; if there is no such x, r is a quadratic non- 
residue. Legendre's symbol (r) denotes +1 or -1 according as r is a 
quadratic residue or a quadratic non-residue of m. Let p, q be odd 
primes. The following are almost immediate. 

p_l 2_t 

( 1) = (-1) 2 , (2) = (-1) 9 ; 

the second is obtainable from Wilson's theorem, arnong severalother ways. 
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The next, the law of quadratic reciprocity, the gem to be displayed, is 

not easy to prove unless one has been shown how: 

(q)(q) = (-1)+(P- ) x +(q_l ) 

There are many proofs. 
Congruences of degree higher than the second suggest the investi- 

gation of further reciprocity laws. All this belongs to the advanced 

part of the theory of numbers where even a competent man might spend the 

better part of his life without getting very far. 

From the few theorems described, it may be surmised that a very 

considerable part of the theory of numbers is concerned with primes and 

their properties. Some apparently sensible questions concerning primes 

have not been answered; others have, more or less. For example, how many 

primes are there less than x still awaits a usable solution, if one is 

attainable. Asymptotically, the number of primes not exceeding x is 

x/log x. Cnly one unsolved problem on primes will be mentioned here, 

because it is the only one of many that conceivably might yield some- 

thing to elementary ingenuity. Is the number of so-called Fermat primes 

22 + 1 finite, or is it infinite? For the connection of these primes 

with cyclotomy, see any history of mathematics. It has been proved that 

if a, b are coprime, the arithmetic progression ax+ b, x = 1, 2, ** 

contains an infinity of primes. For many special a, b strictly elementary 

proofs for the corresponding progressions have been given, and it seems 

reasonable to suppose that sufficient elementary ingenuity would dispose 

of any particular pair. However, the proof of the general theorem is by 

advanced and somewhat delicate analysis. A general elementary proof is 

a desideratum -either that or a proof that no such proof is possible. 

3. Forms. Fermat proved by his method of descent that a prime p of 

the form 4n+ 1 can be represented in essentially one way only as a sum 

of two integer squares. This was one root of the vast and still expand- 

ing arithmetical theory of forms. Form, without qualification, means a 

homogeneous polynomial with integer coefficients. A capital problem is to 

determine what integers are representable in a given form when integer 

values are assigned to the variables (indeterminates x, y, z, ... ) in 

the form. If the form is f(x, y, z, ... ), the problem amounts to solving 

f(x, y, z, ... ) = , for m given, in integers x, y, z, ... , or if for 

certain m there are no integer solutions, proving that there are none. 

An example of extreme difliculty is to prove or disprove the conjecture 

that zero is not represented in the form xn + yn + zn by integers x, y, z 

all different from zero when n> 2. The discussion of questions of this 

order of difficulty is likely to demand the invention of new methods and 

the discovery of new principles as this one, Fermat's, did in giving 

rise to the theory of ideals in algebraic numbers. 
Mhch has been done for the case of forms of the second degree, and 

for such forms in two variables there is a reasonably complete theory. 
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For three or rnore rariables the difliculties increase rapidly. In this 

field the apparatus of linear homogeneous substitutions with integer 

coeflicients and determinant *1 or -1 is otle of keys to the main problems. 

Forms transformable irlto one another by such substitutions are said to 

be equivalent. A given form is transformed into a simpler equivalent; if 

the theory of representations in the second form can be obtained, that 

in the first follows. Wch less has been done for forms of degree higher 

than the second. 
A famous result for forms of the second degree in four variables 

statesthatevery integer is a sum of four intewr squares (zero included 

as a possibility). Another, for forms of the second degree in three 

variables, states that any integer not of the form 4t(8n+7) is a sum of 

three integer squares with no common factor > 1. Ihe first of these was 

one germ of the current arithrnetic of quaternions with integer coefficients . 

It may also have inspired Waring' s famous conjecture (?) that every 

positiveintegerisasumofa fixed number, g(k), of kth powers of positive 

or zero integers. Ihus g(4)=4; itisknown tlrat g(3)=9, and the general 

theorerrthe existence of g(k) for all k but not its exact value for all 

k, notably for k=4-wats proved in the present century by the efforts of 

several mathematicians using different methods, none simple. 
Another striking theorem, stated by Fermat in 1636 and proved by Cauchy 

in 1815, asserts that every positive integer is a sum of m+ 2 so-called 

polygonal numbers im(x2-x)+x. Cauchy proved that a-ll but four of the 

m + 2 can be taken O or 1. For m = 2 this is the four-square theorem. 

llle last suggests a seemingly simpler type of problem. In how many 

ways can a positive integer be represented as a sum of unrestricted pos- 

itive integers, or as a sum of restricted positive integers, such as alI 

odd? kdernwork on this problememploys advanced analysis in the derivation 

of asymptotic formulas. Such formulas are of frequent occurrence in sta- 

tistical mechanics,where sometimesexact computation appears to be humanly 

impossible, not to say unnecessary. Ihis problem was one of the main 

sources, in Euler's work, of the theory of the elliptic theta functions. 

Another vast domain, Diophantine analysss, may be mentioned here, 

although it is not usually thought of as belonging to the theory of 

forms, possibly because a general theory of forms is yet to be created. 

But it appears naturally enough when the restriction of homogeneity is 

removed. Ihe main problem here is to devise a method for deciding when a 

given equation with integer (or rational) coeflicients has integer:(or 

rational) solutions, and if it has, to find them all. Iittle of any 

generality has been done in this direction. 

4. Algebraic numbers. As this sketch began with divisibility, it 

may fittingly close with a mere mention of a generaIization of the theory 

as sketched. A root of an irreducible algebraic equation of degree n is 

called an algebraic number of degree n. If all the coefficients are (ra- 

tional) integers, and the leading coefficient is 1, the roots are called 

algebraic integerse For some classes of such integers the fundamental 

theorem of arithmetic fails, and an integer may be a product of prime 
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integers in more than one way. The fundamental theorem was restored by 
the introduction of ideals. Foranyonewishing to follow this development 
excellent texts, mostly in German, are available. It is interesting and 
instructive in studying this subject to observe how some of the seminal 
concepts of modern akstract algebra appeared first in the theory of alge- 
braic numbers. Ihis is characteristicof the entire subject. Although its 
direct contributions to the sciences have been few compared with those 
of other departments of mathematics, the theory of numbers has supplied 
those departments with methods, problems, and ideas that might not 
o therwise have been imagined . 

The April, 1949 issue of the Annals of Mathematics contains ele- 
mentary proofs by Atle Selberg of the prime number theorem and 
Dirichlet' s theorem on the primes in an arithmetic progression. 
'Elementary' is a relative term. For the prime number theorem the sense 
is that practically no analysis except the simplest properties of the 
logarithm is used. For Dirichlet' s theorem complex characters mod k are 
obviated and only finite sums are considered. 

E. T. Bell California Institute of Technology 
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MATHEMAT I CAL M I SCELLANY 
Edi ted by 

Marion E. Stark 

Let us know (briefly) of unusual and successful programs put on 
by your Mathematics Club, of nes uses of satheratics, of famous prob- 
lems solved, and so on. Brief letters concerning the MATHEMATI CS 
MAGAZ INE or concerning other 'atters sathematical will be welcose. 
Addre88: MARION E. STARK. Wellesley College, Wellesley, 81, Mass. 

Thfe letter of the month: 

I should like to propose a query for the Mathematical Miscellany 
you edit in the Mathematics Magazine. How many texts on Trigonometry 
have been published in the United Staees since 1899? Editions later 
than a first are to he counted as new tests. I bel ieve the answer 
can be found by any industrious librarian on consulting the standard 
professional library equipment. 

If and when this query is answered, another may be proposed. UEy 
so many? 

Yours sincerely, 

E. T. Bell 

California Institute of Technology. 

Editorial Comment: 
Answers to, and comments on, the above are eagerly desired. And 

shall we limit it to Trigonometry? All in favor of widening the scope 
of this discussion will answer Aye. The Ayes have it. 

Next we have a song written for a matbematics dinner hy R. Lariviere 
of Chicago. Ihe tune is 'Let me call you Sweetheart.' Now, everybody 

* . . Joln ln. 

Oh, Miss Intuition, I'm in love with you. 
You are always steady and I hold you true. 
Let me call you Logic - one and one make two 
Oh, Miss Intuition, I'm in love with you. 

I've liked wave mechanics, n-dimensions too. 
Hyperbolic geodesics, they have thrilled me through. 
But, Miss Intuition, they are not like you. 
Let me call you Logic. I'm in love with you. 
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Approximat iGns to Square Roots 

Two methods of taking approximate square roots are widely used. 
1. Let a be an approximate salue of vx. Ihen a better value of 

Ji is (x + a) . 2. This is equivalent to using y = (x 2 a > in place 

of the curve y = /E, and as the former may be written in the form 
9 a)) = 21 ) this method is equivalent to using the tangent to 

y = /; at the point (a2, a). Since the parabola, y = /D, always lies 
below its tangent, this method always gives too large a result. a is 

fact may be shown also by transforming (x 2 a2) _ /F to the fraction 

(x + a - 2a /;), whose numerator is the square of (a - /i) and is 
2a 

therefore always positive. 
It is worth while to note that this is the approximation to which 

we are led by the binomial theorem. For if we have x = a2 + z, we 

get Jx = a + 2Z v , whose first two terms give /; = a +(x 2 a ). 

2. Take a and a + 1, the two integers nearest to di, and inter- 
polate. Ihis is usually illustrated thus: 

/4 = 2, /5 = 2 51, 26 = 2 25, /7 = 2 -, /8 = 2 4, /9 = 3 

The interpolation is equivalent to taking a chord instead of the curve 
y = di, and since the chord is always below the parabola, this method 
always gives too small a root. 

The algebraic formula for this method is obtained by taking two 
numbers, a and a + 1, between whose squares x lies, and forming the 

equation of the line through (a2, a) and ([a + 1]2, a + 1), which is 
(y- a) 1 . To compare this with the other method, reduce 
(x - a2) (2a + 1) 

to the form y = a + (s a2). We may show that this is too small by 

transforming a + (x - a ) - /-x to the fraction 

(2a2 + a + x - a2 _ 2a /i;- Vx) 
(2a + 1) ' 

whose: nunerator may be written (a _ 4)2 + (a - /x), or (a + 1 h 4)(a- 4): 
the first factor is positive and the second is negative. 

The two forms, a + (x 2 a ) and a + (2 al)j are particularly 
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raluable because of their resemblance and bec.ause they shut in the 

ralue of 4 between limits. The fact that a curve lies between its 

chord and its tangent is often useful in making approxiniations. 

Tufts College William R. Ransom 

We think the fol lowing article wil 1 be of interest to readers . 

It is said to be- the work of a fifteen year old boy. Would that more 

of this sort of thing might come out of our high schools. The boy 

is a second year student at the Stuysesant Hi School in New Yorls City. 
In the article in formula VI the superscript on the second 8igma 

should be x rather thar n. Mr. Towber's c(x) is the Kronecker delta, 
8(c,x). He has, therefore, one representation of 8(c,x). 

A Formula for the nth Prise 

The simplest way to obtain a function of n that will yield the 

nth prime (where n is any whole nuiber) is to compound suitably simpler 
fuilctions of n which have certain special properties. In order to 

determine the form these are to have, a definite plan of attack must 

first be formulated. The one I chose is here outlined. 
Cke way of regarding Pn the nth prime, is as the sum of an infinite 

series all of whose terms are zero except the one term Pn. Thus, if 

we can construct a function pn(x) differing from zero only when x = Pn 

and equalling unity for that value of x, we can express Pn in the 
a) 

form .E ipn(i). 
zs 1 

Only three auxiliary functions will be needed in the construction 

of Pn ( x ) 
(a ) A function c (x ) such tha t 

(1) if x = c, c(x) = 1, and 
(2) if x,# c, c(x) s O. 

(b) A function D(x), giving the numl)er of divisors o£ x. 
(c) A function L(x), giering the location of x in the prime se- 

quence, if x is prime. For non-prime values of tEle argument, our 

function is to vanish. 
I shal 1 discuss these functions in order: 
first, the function 

. c(x) = lim z-c+x has the properties of c(x) in (a) aboure, 

for 
z _ z 

(1) if X5Ct 1S6 Z_C X Zlz Z = 1s and 
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z z o 

lig Z (x-c) = liW z+d O+d °* 

Secondly, since sin ox= O if and only if x is a whole number, the 
function c(sino x)[where c= O, and c(x)- is defined as in (a)] is evi- 
dently 1 for integral values of x, and zero for all other values. 

ThiS function may be put in the form zliOm z+ sinv x by direct subst 

tion in the results of I above. Since i divides ^ if and only if t iS a 
whole number, we have the useful result: 

II. lim Z one or Oj according as i does or does not 
z O z * sin z 

divide s. Since lim Z vanishes for all i except divisors of 
z ° z + sin 2 

, any terms of this form in a sum will drop out for non-divisors 
i of ^. Thus, since there are exactly as many ono-zero terms in the 

sum E lim z as there are divisors of ^, and each of these 
isl z ° z + sin n 

non-zero terms e v als unity, it follows that this sum yields exactly 
the number of divisors of ^, that is, if D(x) is defined as in (b) 
above, we have 

III. D(m) = E lim Z 
i=1 z ° z + sin 7 

A number is prime if it has exactly two distinct divisors (itself, 
unity, and no others). E erefore, by combining equations I and III, 
we can show easily that p is prime or non-prime according as 

IV. lim ^ Z = 1 or 0. 

z^° z -:2 + m r 

i=l rZo r + sin - 

Reasoning exactly as we did in the preceding analysis, we may now 
show that 

V. E lim Z _ e @ als the number of primes 
P=1 Z-° z - 2 + E lim r 

isi r-o r + sin o 

not exceeding . Now, if t is prime, this function is exactly L(m), 
the function defined in (cJ. On the other hand, if m is non-prime, 
our function does not vanish. In order to ensure its evanescence for 
non-primes, we shall multiply by the function IV. For non-primes, 
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this assumes the form (a finite number) times zero, and the product 

vanishes. For pris, however, it takes on the form (1) [L(x)] L(x). 

In other words, we have obtained the following expression for L(x): 

Vl. L(x) ( lim -----lr--- 
l (E lim - p Z - 7 

i 1 rio rlliD E^J t z-2siS1 lim r J 

i 

t 

Having obtained our auxiliary function, we can now write pn(x). 

Indeed, referring to the definition of pn(X), we see that pn(X) 5 

lim Z - where L(x) is given by VI. 

z - n + L(x) 
Finally, we obtain the nth prime in the form 

n i-l Pn 

a) 

:£ i l im 
i 

1 ° z-ns Elim t r 1 [2 lim k r 1 

: (r2)+ E lim s 7 J t (r2)+ 2 lim s J 

jSl 8-0 Sssin7 
j_ls_o s+sin vk 

J 

Jacob Towber 

. 

Dear Professor James; 

I have been thinking some more about the project I tentatively 

proposed in my last letter since I learned that you had already been 

cogitating along similar lines, something of a Mathematical Forum 

or Mathematical Soundingboard. Ihis department would publish letters 

either signed or anonrmous dealing with nontechnical matters in the 

mathematical world. The letters could be aimed at improving certain 

mathematical situations but should be strictly impersonal. We could 

get a freer expression if we allowed anonymous letters but of course 

there are objections to this. My guess is that subscribers alone 

would provide more letters than we could publish. If the letters 

are non-tecnical then even people with no mathematical training 

could find them interesting and enjoyable. My talks with colleagues 

convince me that most mathematicians have something that they would 

like to express an opinion about and it is entirely possible that 

8 ome good might come of such a program. Once a few controversial 

matters appear in print, I believe we would get a lot of action in 

the form of expressions of opinion. What would you think of asking 
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our readers i f they would like to have such a department? 

As ever 
H. V. Craig 

I would like sery much to harre the reactions of our readers to 
this suggestion. 

Glenn James 

(Continued from inside back cover) 

Harold Everett Bowie, Associate Profeasor of Mathematics and Dept. 
Head, American International College, was born on January 23, 1901 
in Durham, Maine, and attended the lJniversity of Maine (B.A.'28; 
M.A. ' 32) . He was administrator and teacher in the public secondary 
schools of Maine from 1921 to 1936 and was instructor in Mathematics 
at the University of Maine before taking a position at American 
International College in 1938. His chief mathematical interest is 

* . . n analysl s . 

Biographical sketches of E. T. Bell and Pedro A. Piza were published 
in rol. XXI, no. 2. Gordon Raisbeck's sketch will appear in the next 
i s sue . 
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