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SOME DEFINITE INTEGRALS OCCURRING IN HAVELOCK'S WORK ON THE WAVE
RESISTANCE OF SHIPS

H. Bateman

2
1. In his study of the effect of varying draught Havelock requires
the values of integrals of the form

(V]
(1) Iz e"ﬂseczd’ cos?®* 1 ¢ do,

and the first two sections of this note are devoted to a study of such

integrals. The substitution Btan’s = t gives the equivalent expression

@ Sttt an s u B e 8,

. . . . 3
where W is Whittaker’s confluent hypergeometric function . The asymp-—
totic expansion of this is

(3) % (/B e-ﬁzzz %, m+ Y% --;-')

and this divergent series 1s also the asymptotic expansion of the
integral

(4) Tpe* jmt'**(lﬂ) et de = AnBRe Ny L g B
2rr(m+-) 0

The two integrals (2) and (4) are equivalent on account of Kummer’s
relation

b ©
(5) ——Z—-L:sb" (1+ s)% %8 ds = —Z:-‘% s (1 + s)7b e7Z5 ds
I"(b) (a)

which was indicaded by his expression

(6) Lla=b) 7 F (b bgsl; z>+—§——lz" F (a; abe 1; 2)
Ma) 11 r(b)

for either side of (5). This expression requires modification when a
and b dlffer by an integer and so an alternative proof of (5) may

be useful®.
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2 H. BATEMAN
2. Tt will be assumed that a and b have values for which the integrals

(5) have a meaning. Then with a suitable choice of ¢ the equation may
be written in the form

o] [+

(7)) T(a)(c-a) % e~ 2t ge=b=1 4y % e=Z8 $b=1(1+ s)2ds =
o [+ ]

C(b)(c-b) joe'Z‘t‘-““"dt -{, e~Zsga=1(1 + s)-bds.

Now, Pareto’ has pointed out that if
[+ ] [ o]
F(2Z) = joe-Z*f(t)dt and G(Z) = {)e-Z*g(t)dt then

F(Z) G(Z) = f-:e-th(t‘)dt
where h(t) is expressed by the convolution integral8
h(t) = j(‘)’fu_u)g(u)du,
so that the relation (7) holds if
C(a)(c-a) j: (t-u)e=b=1ub=1 (1+u)-cdy = r(b)r(c-b)j:: (t-u)e=2=148=" (1+u)=bdu,

it.e. if F (a,b;c;-t) = F {(b,a;c;-t).
21 21

Kummer's relation (5) is thus implied by the well-known property of the

interchangeability of the parameters of the first kind in Euler’s

hypergeometric function.

3. In his second approximation for the case of a circular cylinder in

a uniform stream'® Havelock used the two integrals

(8) L, = jo‘fcos(zrqb ~ ktans)dé
(k> 0)

m
(9) M, j:sin(zw - ktang)ds

for which valnes were given for 7 = 0, 1, 2, 3, 4, 5, 6. The rest of
this note contains come observations on these integrals.

The integral L, has been studied elsewhere oA general expression
for positive integral values of 7 is

(10) L, = (-)T"ﬂe‘k'ﬁ (1-7;2;2k)

while L, has Laplace’s value Yre~*.
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INTEGRALS IN HAVELOCK'S WAVE RESISTANCE OF SHIPS 3

m
(11) Mo=-jfsin(ktane)de= -J:%L"—L;-;- dt =Hle*Li(e*)-e*1i(eF)) -
+

where s )
. g 3
li(e?) = [ Q¥ __ = v + | + =2+ Z 4 _Z
A A e A W TRMIC I TIME YT

is the logarithmic integral ( ¥ is Euler’'s constant). When use is made
of a recent result obtained by Copson 12 My can be expressed in the
form

(12) M= shk logk - > B (on 4 2),

n=0 ['(2n + 2)

where ¢ (z) =-jL-log1ﬁ(z). Havelock’s expression for M, is of the type
z

1 .
13) #, = -- Lli(ek) + R__ (k)
where RT—l is a polynomial of degree 7-1. There will also be an
expansion °
= _ 1 k"
(14) M.,. = -7 L.,log k +n§0 An ;7-

in which the coefficeents A have values which are readily found by
means of a recurrence formula.

In the case of the function L, it is known that
(15) 2L, =27L. + (7 - 1) L, + (t+ 1) L, .

The corresponding relation for M, seems to be

13

(16) 2kM, + 2= 2tM + (T - 1) M, _ + (r+ 1M,

This relation may be checked with the aid of Havelock’s values

(17 Ry =1, R, = k, R, = +(1 = 4k + 2k?), Ry = 3k(5 = 5k + k?).

The coefficients 4, may also be derived with the aid of Archibald’s
solution of the confluent hypergeometric equation in the logarithmic
case '4 in the following manner. The differential equations satisfied

by L, and M, are

2
(18) EGLr+ @romL, =0, k9M + (2r kM, =

dk dk
The first of these equations may be reduced to the equatlon of the
confluent hypergeometric function by the substitution L, Z The
second equation has a particular integral of the type
_l_'l' k2 'k3

97 ‘291 %33
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4 H. BATEMAN

when 7 # 0, and the general solution is obtained by adding the general
solution of the equation for L, . When 7 is a negative inteper, -s say,
the recurrence relations (15) and (16) indicate that L, = 0 and

= 1y (.-k =
(19) M_ = ;ll(e )L _(-k) - R__, (<k) (1 = =s).
It should be noticed that both L, and M, satisfy the relations

dM
(20) 2k gz~ = (T = DM,_,- (7 + DM, |

M, dM
(21)  g= + —gptt =M, - M

"4

FOOINOTES

1 Edited from a manuscript found among the papers of the late
Professor Harry Bateman. The original manuscript has been followed as
closely as possible, but some parts have been re-written, and a few

references added. A. Erdelyi.

T. H. Havelock, Proc. Royal Soc. London. A 108 (1925) 582-591
E. T. Whittaker and G.N. Watson, Modern Analysis § 16.12
Modern Analysis § 16.3

E. E. Kummer, J. fur Math. 17 (1837) 228-242

In Havelock's paper m is an integer.

V. Pareto, J. fir Math. 110 (1882) 290-323

This type of integral may, perhaps, be named for Johann Bernoulli
on account of its occurrence in the problems of the tautochrone and
brachistochrone. A special integral of this type occurred, however, in
the work of John Wallis on the quadrature of the circle. Related special
integrals, known as binomial integrals, occurred also in the work of
Newton, Leibniz, and Euler. Integrals of the type under consideration
occur also in the expression for the remainder in Taylor's theorem and
in the Liouville-Riemann expression for a fractional integral. The use
of integrals of Bernoulli’'s type in mathematical physics dates chiefly
from the time of Poisson who used such integrals in the theory of
hysteresis and other phenomena. Poisson was, I think, also the first to
use the method of the inverse Laplace transformation in the solution of

a physical problem (Cf. J.de 1'Ecole Polytechnique t. 12 cah. 19 (1815)

1-162)

Note by A.E. E.G.C. Poole (Quart. J. of Math. Oxford 8 )1938)
230-233) has shown that the property in question of the hypergeometric
function can be established by integrations by parts when a and b differ
by an integer, and the same 1s true of Kummer’s relation (5). If b - a
is a positive integer, n say, the left hand side of (5) is

(=)"z° G’dne-Zs a+n-1 -a . 74 ® .Zs N as
Ma4n) L ds" y (Les) — ds rYa+n)<L‘e ds™ {s

by n successive inte%rations by parts, and this is identical with the
right hand side of (5).

10 T. H. Havelock, Proc. Royal Soc. London A 115 (1926) 268-280

11 H. Bateman, Trans. Amer. Math. Soc. 33 (1931) 817-831; Proc.
Nat. Ac. Sciences Washington 12 (1931) 689-690

12 * E. T. Copson, Proc. Camb. Phil. Soc. 37 (1941) 102-104

13 H.Bateman, l.c See also M. Lerch, J. fur Math. 130 (1405)
47-65; N.G. Shabde, Bull. Calcutta Math. Soc. 24 (1932) 109-134; N.A
Shagtri il. Mag. (7) 20 (1935) 468-478; J. Indian Math. Soc. (N.S.)
3 (1938) 8-18, 152-154, 155-163,

14 W. J. Archibald, Phil. Mag. (7) 26 (1938) 415-419.

OO\ bW N

"N1es) ) ds,
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UNDER CERTAIN GROUPS

Sr. M. Philip Steele and V. O. McBrien
FOREWORD

Many teachers of mathematics like to introduce the concept of a
Group at an early stage of the student’s training so that, in more
advanced study, there will be less confusion about this important
idea. One common method which appeals to many freshmen is a consider-

ation of the rootsV?f'unity. Thus, the equation x> = 1 has three roots,
namely 1, - % + 1 ?; % -1 E?; or, as they are usually called,
1, w, and «?. This set of three numbers have the interesting property
that the product of any two numbers of the set always gives a member

of the set. For example, w-«? = 1 and @w?.0? = w. This set of three
is said to be closed under the operation of multiplication. This prop-
erty of closure is a fundamental property of a mathematical group.
The operation under which a group is closed need not be ordinary multi-
plication. For instance, in the following paper the operation of sub-
stitution is used frequently.

We may obtain a geometrical configuration of the group of three

and -

numbers 1, w, and w? by plotting them in the ordinary complex plane.
The three numbers all lie on a circle of radius equal to unity and the

vectors to these numbers are 120° apart. Then if w? is multiplied

by w we see that this is equivalent to rotating the vector to w? through

120° since w?-w = 1. However, when the number 1 of the set is multi-

plied by any member of the set, that member remains unchanged. The
number 1 is said to be the identity element of the group. In every
group there is an identity element.

In the following paper we shall consider some configurations of
certain groups in a manner somewhat analagous to the way described
above for the three cube roots of unity. The methods used are the
methods of inversive geometry; an inversive property being a geometrical
property which is unchanged, or invariant, with respect to a set of
transformations called direct circular transformations. An example of
such a transformation is the reflection in the X-axis, z' = Z, where
Z = x - yi is the conjugate of z. We use the reflection in high school
geometry when we turn a triangle over on an edge. The groups under
discussion are the so-called finite inversive groups which are formed
by the products of certain inversive transformations. The method
demonstrates how the plane may be divided into a set of regions by
a system of circles. No attempt is made in this paper to give a detail-
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ed discussion of the nature of the inversive plane but it is to be
noted that, throughout the paper, a straight line is considered to
be a special case of a circle with an infinite radius.

1. Introduction. The purpose of this paper is to show how certain
curves, invariant under the generating transformations of a dihedral
group of order 2n, divide the real inversive plane into 2n fundamental
regions. The method and the results following seem to contribute to
the classical method of building up finite inversive groups by
forming the products of a set of transformations. [1, p. 75.]

We define here the term fundamental region in the same way as in
the theory of the complex variable. Taking any point of the complex
plane of Riemann, or the real inversive plane, and applying to it all
the substitutions of the group, we obtain a set of equivalent points.
Each fundamental region of the group contains one point, and not more
than one point, which is equivalent with respect to the group of
substitutions. [2, p. 290.] In what follows we shall have a finite
number of regions; the system of curves by which the plane is divided
into fundamental regions is defined as the basic configuration of the
p lane under the group.

2. The Generating Transformations. In considering the generating
transformations below we make use of the one-to-one correspondence
between the real inversive geometry of the plane and the complex
projective geometry of the line. That is, to the complex points
z = x + yi of the line correspond the real points z = x + yi of the
plane, and to the complex projective transformations of the line
correspond the real, direct, circular transformations of the plane.
[3, p. 395]. ,

For generators of the group we employ R(\) = f and S(\) = s - A

where r, s, and A are, in general, of the form a + bi. Both of these
generators are of period two, and it has been shown [4, p. 424] that
the group generated by them is the dihedral rotation group whose order
is twice the order of the product (SR). It has also been proved
[5, p. 80] that only four distinct groups can be generated by R, S,
when r and s are rational numbers, but other groups of even order
may be generated when r and s are complex numbers.

In the real inversive plane, the transformations are R, z = f}

and S, z = s - z'. They are not projective but are direct circular
transformations, or Mobius transformations [3, p- 384]. Both R and S
are the product of two inversions. The conditions on r and s, so that
the group generated by R and S be of finite order has been discussed
(1, pp. 80-87 and 6, pp. 3-7], and it has been shown that to generate
2
s

= must be real and satisfy a certain poly-

a finite group, the ratio
nomial equation.

3. Curves of Basic Configuration for G,,. 1If, for the pair of



BASIC CONFIGURATIONS OF THE PLANE 1

generators R(\) and S\), s = 0, then (SR) is of order two, i.e. (SR)? =
identity, and we obtain the only Abelian rotation group G,. The trans-

formatéons in the real inversive plane are then R, z = L. and S,
z
z = -z,

The elements of the group are A, {-, -)5\,
generators, I, R, RS = SR, S. We may regard every point in. the plane
as affected by each operation of the group. That is, each operation
affects a transformation of all the points of the plane. However,
certain values of A yield less than four distinct points under the
operations of the group. Thus, by setting A equal to each of the other
elements we obtain the three pairs of invariant dyads, :rZ, (0,°),

1
and tirZ, By an invariant dyad is meant that each element is left

unchanged or transformed into the other one under the operations of
the group.’

From the invariant sets of points we may easily build up the basic
configuration of the plane under G,. Since we are in the real inver-

=\, or in terms of the

sive plane we shall regard all straight lines as proper circles. The

circular transformations R and S send circles into circles. Further,

R, z' = g, sends the point O into ® and vice versa and S, z! = -z,

sends circles into circles by reflecting them in the origin. The in-
1

variant dyad (0,®) lies on the join of :r¥, namely:

r2z;:-rZz =0
1
Likewise, (0,9) lies on the join of iirf, namely:

1 1
rZz + rfz = 0

1 1
Also, the four points, tr{, tirf, lie on the circle with center at

O and radius = IJ;?’, namely:
1
7= (r7)?

All applications of the G, leave these three circles invariant. Hence
we call the three curves

1 1
rZ; -rZz =0
1 1
rZz+ rZz = 0

1
2z = (r7)?
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the basic configuration of the plane under G,.

We have already mentioned that r may be real. This is clear, since
ifr =1, we have

27 =1

The transformation z’ = rz merely stretches the plane from the origin
in the ratio |r|:1 and rotates the plane through an angle equal to
the amplitude of r. Thus, our basic configuration is changed only in
size and orientation with respect to the axis of reals. Figure 1 shows
the basic configuration for real r.

Figure 1 Figure 2

Under the G, there are four fundamental regions cut out by the

basic configuration because if we apply the transformations R, RS,
and S to a point A in the plane we obtain a set of equivalent points.
In this sense any two adjacent sections of the eight sections cut
out by the configuration form a fundamental region. That there are
eight sections suggests the well known property that this group is
a subgroup of the inversive group of the rectangle or of the rhombic
four point [1, pp. 82-83].

When s2 = r, the group generated is of order six since (SR)3 = 1.
The basic configuration of this group has been discussed [7, p. 24].
This group is isomorphic with the well-known cross ratio group. The

2
generators are R(\) = %: and S(A\) = s - \, where s # 0. The elements

2 2
are, respectively, I, RS, SR, S, RSR = SRS, R, or A, ( s N Lg)\)-\ s7)
s -
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2
s = A, Zf%%%i;, %:. Setting A equal to each of the elements of the

of the Gg we obtain the invariant sets of conjugate points, (-s,2s,3),

(5,0,@), (-sw?,-sw) where w? + w + 1 = 0.
The only invariant line under the group is the join of O and ¥,

Sz -sz=0

Both invariant -‘triads lie on this line. The other curves of the con-
figuration are: the circle with center at O and radius Is!, the ¢ircle
with center at s and radius |s|, and the join of (-sw?, -sw). These
circles are:

sz - sz - ss =0

Ifs = 1, we have the invariant system of (n + 1) circles (Fig. 2)
2z = 1
z +z2=1

(z-D(F-1)=1

z-2z2=0
The twelve sections cut out by the configuration suggests the property
that it consists of those operations of the inversive group, G,,,
which are formed by an even number of inversions.
The manner in which the basic configuration is built up is similar
for the groups of order eight and twelve.
. To generate the octic group, G;, we have, when s2 = 2r, (RS)* =‘1.
2 .
Hence, the generators are R(\) = %X and S(A\) = s = A, or, in the

inversive plane.
R: 2' = s? S: z2' =5 -2
2z
s? s2  (2sh - s?)
ToN (25 - )’ PN !
(82'28)\.) (Sz'sx) (SK) I. S. R. SR, RS SRS RSRS RSR
(23“2)\)’(,8'%)’(2)\.'8)01. ’ y 1Y, ’ ’ ) ’ .
There are just ten points in the plane which are invariant under the
Gy (i.e., they are transformed into less than 8 distinct points by

The elements of the Gy are A, s = A

Gy). These are composed of the two sets of four conjugates (s,3,0,%),
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[:t——-s /5, s(1 ¢ é)] , and the pair of conjugates Ll;——-"-l The two sets

of four conjugate points lie on the join of O and £ 2 the only invariant

line in the real inversive plane under Gy. The equation of the line
(circle) is

8(1 + 1) is

The join of the conjugate pair 3

Sz +sz-s5=0
This line passes through %, one of the other invariant points.

As in the Gg, the invariant points which lie onthe only invariant
line are related by pairs to the points not on the invariant line,
&1—*—‘—1. Thus, the circle on O and s and radius %lsl passes through

3(12* i) . The equation of this circle is
_ ‘?—) - _ E = (S?)
(z 3 (z 2) 1

Likewise the pair of circles on is {22 and s(1 % /22) with radii equal

to -2—| l also pass through the above pair. The equations of these
circles are respectively:
27 = S8 '
2

and

(z - s)(z -5%) = 3—2—-

The invariant line (the join of O and -;—), along with n (in this

case, four) circles of the coaxial system of circles with axis as
the join of SJ-I—;—"! are invariant under all the operations of Gg.

We thus have a basic configuration of the plane under Gg consisting

of the system of circles:
Sz -sz=0

Sz + s2 - ss =0
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- S —_‘S: = SS
(z 2)(z 2) 4
2z = ss

2
(z - s)(Z-735) = 88
2

The basic configuration is shown in Fig. 3 where the value of s
is taken to be on the axis of reals (in this case we let s equal two
for convenience). There are eight fundamental regions, the basic con-
figuration cutting out sixteen sections in the plane.

Figure 3
If s2 = 3r then (BRS)® = 1, we obtain the dihedral rotation group,
: 2 Fa (3sh - s?) A
G,,, with elements A, s - \, &, , s s ) _SA
rg WEER etements % S T M SN s - 30 ETN (A - 5)

Q- s%) (h-s?) (- 25%) Qh-s%) (A=) (252 - 3\
(3 -5s) ' (6A-3s)" (6A-3s)  (3\-25)" (3A-25)" (3s=-3N)
or I, S, R, SR, RS, RSR, RSRS, RSRSR, SRSRSR = RSRSRS, SRSRS, SRSR,

2
SRS. The transformations are z' = %— and z' = s = z, both being the
z

products of a pair of inversions.

s /6

The invariant elements consist of the invariant dyad [i t is ?;]

s 2s £), (zs {é,s t s £§,
3 3

and the two sets of six conjugates (O,W,s,g,——,-
S 4 s‘éé ).
2 6

The only invariant line under G,, is the join of O and s
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which line contains all the points of two sets of six conjugates which
are invariant under the operations of the G,,. Again we have a system

of co-axial circles with axis as the join of the invariant pair

[-32- t is /-g_é]which has the equation

As in the group of orders six and eight it is easily verified that

this line passes through %
The circle on [-;— 3 s‘/-6—§] which passes through the invariant dyad

[g— t is !{6‘5] has for its center % and radius /-gg-ls l Its equation 1is

-S)(z-%) =8
(z )(Z 2) B

N |2

We have also the pair of invariant circles on (o, 2?3) and (’53-, s),

respectively, which pass through the invariant dyad

3 .
- 28y(7 - Z5) - 43
(2 3 )@ 3 5
The pair of circles on is {33 and (s % s /—33-) with centers at O and

s also belong to the coaxial invariant system. They are, respectively,

I T

Thus, the real inversive plane is divided into 12 fundamental
regions by the basic configuration under G;, consisting of the invariant

set of (n + 1) circles (Fig. 4)
sz -sz=0
Sz +sz-ss5=0

(z-i)(—-g)sg

12
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- 8)(z - 8) = £8
(z 3)(z 3) 5

- 28)(7 - 235) = 4s5
(z 3 ) (z 3 ) 5

Figure 4

This method of finding the basic configuration of the real inversive
plane is perfectly general for all dihedral rotation groups, for all
such groups may be represented as a group of subtraction and division

2
when & may be irrational [5, p. 85 and 6, p. 4]. For example, the
dihedral G,, has a basic configuration in the real inversive plane,

2
but in this case 57 is irratiorial. Furthermore, the geometry of the
configuration leads to the suggestion that some of the invariant points
are notable points of regular n-gons.
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ON THE SQUARES OF SOME TRIANGULAR NUMBERS

Pedro A. Piza

Since ancient times the following theorem has been known:

The square of the triangular number of order x is equal to the sum
of the first x cubes.

The expression for this classic theorem is

[.x_(.LLl_)]z = gaa'
2 a=1

which can easily be proved by induction upon adding (x + 1)3 to each
side of the equation.
I have found the following related theorem, the proof of which is
the object of this note:
The square of the triangular number of order (x% + x) is equal
to twice the sum of the first x cubes, plus five times the sum
of the first x fifth powers, plus twice the sum of the first x
seventh powers.
The equation expressing this theorem is

o242+ D L 95 B s5a5s25d = Sab (1)
2 a=1 a=1 0"—"‘

Before attempting a proof of (1) we shall establish the following
general relation:

(2 + 2)" ;(26 n 1)% Q2nt1-2e (2)
2 c=1 a=1 *

[+ ]
When x = 1, 2 a*
a=1

1 for all values of m. Hence

20 . % (2¢
2 1

c=

1)= 2n7 1,

which is a known property of binomial coefficients.
Suppose that (2) is true when x = y - 1, y > 1, so that

y-1
= D% . G-y | P (9e™ 1) g2ntiec,
2 2 c=1 a=1

Add the identity
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2 2 _
c=1 .

to obtain

2 n
(y° + y)" _ $(2¢ ™ 1)S g2nt1-2e
2 c=1 a=1

which completes the proof of (2) for all values of x and n, by mathe-
matical induction.
For n = 2, 3, and 4, we have by (2)

§x2+x!2._.2§a3

2 a=1

R
+
L
n
w
™M n
Q
o
+
™M
Q
w

2 a=1 a=1

x
al + 43 a°
1 a=1

(xz +X)4 = 4
2 a

" Mn

The first member of (1) can be written

[(x2 + x)2%2 + (2% + £)1? LR M C LA 2 M C ik x)?
4 4 2 4

Therefore we write

sz + x23

2 a=1 a=

[}
w
™M
Q
3]
+
"M R
5]
w

(G LA
1 o=

And adding the above three equations we obtain:

2
[(xz'rx)(xz'fx*l)] =2§a3+5§05"‘2§°7-
9 a=1 a= =
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SOME EXAMPLES ILLUSTRATING CONTINUITY
AND DIFFERENTIABILITY

Gordon Raisbeck®

FOREWORD

The concepts of continuity and differentiability of a real function
of a single real variable are not generally understood even by people
whose daily work brings them into contact with calculus.

Let us first review the definitions of continuity and differenti-
ability. A function f(x) of a single real variable x is said to be
continuous at a point x_, if for every number € > 0 there exists a

number & > 0 such that
(1) If(x) - f(zo)l < € for every x such that |x - xol <39
An equivalent definition is this: f(x) is continuous at x, if

(2) lim f(x) = flx,)
S"So

A function f(x) is said to have a derivative at the point x, if

(3)  pim Lz 3) - f(x)
§=0 S

exists, and in that case the derivative is equal to the above limit.

A function is said to be continuous or to have a derivative in
an interval if it is continuous or has a derivative at every point
of the interval.

It would defeat the purpose of this article to give a rough idea
or a description in words of what these definitions mean, since the
principal examples to be shown are designed to illustrate cases
where the rough ideas fail.

Introduction. Discontinuities are usually classified in three
classes: removable discontinuities, simple discontinuities, and
essential discontinuities. A function f(x) is said to have a remov-
able discontinuity at x_ if

(4) ,1_.1411 f(x) = a ¥ f(x,)
o
As an example of such a function we may take
(5) f(x) = limV[x] = 1 ifx £ 0
nee 0if x = 0

which has a removable discontinuity at x = 0. Such a discontinuity
is called removable because it can be removed by redefining f(x)
at x, so that f(x,) = gEEP f(x).

o

*The author is now a Member of the Teahnical Staff at the Bell Tele-
phone Laboratories.
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A function f(x) has a simple discontimuity at x, if the following
conditions exist:

(6) lim° f(x) = a

X=X -
[-]
and

(7) 3:5210 f(x) = b

but @ # b, We say x = x, + 0 if x ~ %, in such a manner that x 2 x,;
and x * x, - 0 if x = x, in such a way that x < x_. Equation 6 defines
the left-hand limit of f(x) at x,, and equation 7 defines the right-
hand limit of f(x) at x, An example of a function with a simple

discontinuity is the postage required on first-class mail considered
as a function of weight. Here

f(x) = .03 0<x<1
f(x) = .06 1 <x<2
and so forth. Here

(8) lim f(x) = .03

x-1-0

but

(9) lim f(x) = .06
x=1+0

and the function is discontinuous at x = 1.
A function is said to have an essential discontinuity at x, if

either the right-hand or the left-hand limit as x approaches x, does
not exist. An example of such a function is
(100 flzx)=sinl x40
=0 x=0
Here neither the right-hand nor the left-hand limit exists.
In this paper will be shown several examples of functions whose
behavior is startling and seems paradoxical in the light of popular

conceptions of continuity and differentiability.
Functions of Unusual Behavior. Let

(11) f(x) =1 % rational
= 0 x irrational.

For the benefit of those who believe that this function is excessively
artificial, it may be pointed out that
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(12) f(x) = lim lim [cos (m!mx)]?®

It is easy to see that

(13) }ig f(x)

does not exist for any a; hence f(x) has an essential discontinuity
everywhere. Furthermore, this function has no derivative, because
a function cannot have a derivative at a point where it is discon-
tinuous.

The next illustration is a function which is discontinuous for
every rational value of the argument, but which has a derivative for
some (necessarily irrational) values. We assume the following lemma:

' If x is a rational number & and a is a quadratic surd there

q
is a positive number k depending on a but not on p and g such that

Lemma

k
a- x| >
| I 2

for all x.
Let f(x) be the function defined thus:

(14) f(x) = Jg ifx = % reduced to lowest terms and ¢ is positive
q

= 0 if x is irrational.

If we recall that irrational numbers exist as close as we please
to any rational number, it follows that f(x) is not continuous for
any rational value of x. On the other hand, if we let x, be a quadratic
surd, then

. flx, + 8) - f(x,) £
(15)  lim - 5 - '[%‘]

%o

exists. For if

(16) x +s-§
(17) 3 = % - x,
(18) lslzf,

by lemma, and

k

(19) q 2
v

'Hardy and Wright, Theory of Numbers, Thm. 188, p. 157
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Therefore

|f(x° +3) - f(x,)
)

(20)

since f(x,) = 0. Hence

flz, + 8) - f(x) 1 s
5 lf%w;sfﬁsa"k/;"’

(21) }ig

by 19 and 20. If on the other hand x, + & is irrational then the
limit 21 is also equal to 0. Therefore

(22) [g—gx =0 if x_ is any quadratic surd.
o

Actually, the points at which f(x) has a derivative are not ex-
ceptional, but on the contrary the points at which f is not differ-
entiable form a very thin set compared to the set of points where
it is differentiable. A proof of this statement, in fact, an exact
description of what it means, is beyond the scope of the present
article.

The next example is an example due to van der Waerden' of a function
which is continuous but has no derivative anywhere. We shall build
up this function as an infinite series of functions defined as follows:

Let f, (x) be the distance from x to the nearest integer. Let

f,(x) be the distance from x to the nearsst fraction of the form

f%. In general let f,(x) be the distance from x to the nearest fraction

of the form i%i. Analytically,

= 1 - |4
(23) fo(x) = min ‘x i
where p takes all integer values. Obviously f, (x) has a period i%;,

rises to a maximum of 5-%6;, and has a derivative of 1 except for

values of x of the form 3 4 , where it has cusps. Observe that if

(xy, x,) is an interval in which f,(x) has no cusps,

(24) £ (xp) - f,(x,) = t(x, - x,).

‘B. L. van der Waerden, Ein einfaches Beispiel einer nichtdiffer-
enzierbar stetigen Function, Math. Zeitschrift, 32, 1930
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Now consider
[ ]
25 z
(25) nZ, fn(x)

For any x

—r—
(26) If (®)] < CBTD

Hence the series 25 converges uniformly and we may say

@) fa) = 2 £

Since the series 25 converges uniformly, f(x) is continuous.
Let us suppose for a moment that f(x) has a derivative, i.e., that

(28)  Jim Lz +8) - f(x)
-0 S

exists. Then if we take any sequence of numbers 3,, 52, vee, O
such that

(29) lim &8 = 0
n-®

it will also be true that

8 -
(30)  1im LE 20 ° f(5)

n-o Sn

will exist also, and be equal to 28. We shall now find such a se-
quence 8,, 8,, ..., 8., ... for which the limit 30 does not exist.

Let us suppose that 0 < x < 1. Divide the interval (0,1) into
2:10" equal intervals, with endpoints at the points —E—.WWe may say

10"

+ 1
-10"

)

31 P_ <4<
B re s

N

+ 1
where p is an integer. Notice that the interval [ P 4 ] i

&1’ 2107) 0 °
region inside which f, (x), f,_,(x), ..., f,(x), and f,(x) have no
cusps. )

Now consider the two points x + 10" 'and x - 10°""'. One of
these points is in the above interval. If the former is in the in-
terval, let § = 107!, Otherwise, let 5, = -10"""'. Note that

lim 8, = 0.

n-o
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Let us return to

5 5)-
(32) ﬂ_& + 8; - flx) . =0 [f.(x + ) f.(x)]
3

Let 8 = 8 and divide the sum into two parts thus:

S U+ 8,) - £u(0)] 5 [fu(x+ 5, - fu(x)]
n=0 + n=n+1
) )

n n

By equation 24, every term of the first sum is #§,, and because of

the periodicity of f.(x) every term of the second sum is zero. Hence

flx + 8,) - f(x) .2

5n m=0

(33)

It is not hard to see that 33 is an even integer if n is odd and
an odd integer if n is even. Hence 33 does not approach a limit.
Hence by the previous discussion, f(x) does not have a derivative.

It might seem that the cause for the non-differentiability of
van der Waerden's function is the presence of cusps on the functions
f,(x) which might tend to produce concentrations of cusps on f(x).

This is not the true cause, however, for Weierstrass’ function

[+
(34) f(x) = = b"cos (a"mx)

n=0
where a is an odd integer and ab > 1, is not differentiable anywhere,
and differs from van der Waerden's function chiefly in that it uses
sinusoidal waves instead of sawtooth waves. On the other hand,

(35)  flx) = 3 a2
n=0 p!

has cusps wherever any of the functions fn(x) has a cusp, but is
differentiable at all other points.

Massachusetts Institute of Technology
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A STATISTICAL PROBLEM IN ADVERTISING
C. D. Smith

Profit from advertising is of interest to any business operation.
A statistical approach to the problem may be based on the assumption
that advertising expense is justified only when the increase in net
profit from sales is greater than advertising cost. The many vari-
ables in our economic system make it very difficult to treat separate
causes of a given event. H. V. Roberts' established a case in point
by computing correlations for a set of factors that should influence
advertising. He obtained relatively small values for simple correl-
ations and partial correlations. In conclusion he points out that
one may expect very little information from correlation methods.
Other studies have been published which seek to compare advertising
techniques by use of multiple regression coefficients. In a recent
report by Stephan2?, ‘History of the Uses of Modern Sampling Proced-
ures’, has no reference to use of sample design in advertising re-
search. The purpose of this paper is to give a sample approach te
the matter of advertising cost.

To test the value of advertising by measuring gain in a controled
experiment one may proceed as follows. Select area A to include a
sufficiently large number of towns. For each town in A select a sample
of prospective stores which ordinarily stock a product of type P.
For each town select the sample as follows.

1. Select as center block the one with the largest number of stores
of the required type. Choose one at random for the sample. From the
zone of stores adjacent to the center block choose one at random
of required type.

2. Continue the selection from zones adjacent to the preceding zone
until the outside area has no block with more than one store of
required type. Select one at random from this outside area.

3. Proceed in like manner from town to town until the sample contains
at least one hundred stores.

Begin the experiment by placing product P in each sample store
and list the name without comment in the usual storewide advertising
space. Calculate net profit from sale of P over a given period. Now
begin special advertisements featuring P and sell for a given period.
Increase the special advertising cost at successive periods. Let the
cumulative cost of advertising at the end of a given period be Xi’

the corresponding net profit be Zi, and the advertising value Vi be
given by the formula V; = Z; - X,. In due time the value of V will

1. The Journal of Business, University of Chicago. Vol. 22, No. 3,
July 1947.

2. Journal, American Statistical Association. Vol. 43, No. 241,
March 1948.
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show a decrease compared to the previous period. This indicates the
point where the greatest profit has been attained. Although we cannot
say that V is produced solely by the increase in X, we can say that
X should not increase beyond the point which maximizes V.

Note in conclusion that a basic value of V was esdablished be-
fore values of X were assigned. In this way causes apart from X have
been removed to this extent from the final value of V. If some other
factor is believed to increaee with X, that factor should be checked
over the sample of stores for a sufficient period. We may say that
the X which gives the maximum value of V is a signal beyond which
one should not spend.

University, Alabama

A COMPARISON OF THE UNITED STATES RULE WITH
THE MERCHANT'S RULE FOR COMPUTING THE
MATURITY VALUE OF A NOTE ON WHICH
PARTIAL PAYMENTS HAVE BEEN MADE

Joseph Barnett, Jr.

FOREWORD

When partial payments are made on a note before the maturity date
there are at least two ways to compute the amount due the holder of
the note when it is due. These are designated as the United States
Rule and the Merchant’s Rule. The rule to be used usually depends
upon an agreement between the parties concerned at the time the note
is given. However, the United States Rule is based on a decision of
the United States Supreme Court to the effect that it is not legal
to charge compound interest on a debt. It is the purpose of this
paper to show that for notes having large face values, the difference
between the maturity values computed by the two methods may be large.

The United States Rule may be stated as follows:

Simple interest is computed on the note from the time it was given
to the time of the first payment by the use of compound time. If the
payment is equal to or greater than the interest, it is subtracted
from the sum of the face of the note and the interest. Interest is
computed for the periods between successive Fayments on the remainders
resulting after subtracting each payment from the sum of principal
and interest due at the time it was made; and the process continued
until the time of maturity of the note. The result, so obtained, is
the maturity value of the note.

But if the payment at any time is less than the interest, the interest
is not added to the principal nor the payments subtracted until the
time at which the sum of the payments not having been subtracted is
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greater than or at least equal to the sum of the interests not having
been added. Then the sum of the interests is added to the principal
and the sum of the payments subtracted. Then interest is computed
on the remainder as aforesaid.

In order to compare the two methods, I shall alter the statement of
the Merchant’s Rule so as to show more clearly the difference of the
two methods, and still obtain the same results by its use as those
obtained by using it in its usual form. The altered Merchant’s Rule
may be stated as follows:

Compute the simple interest using compound time on the face of the
note from the time it was given to the time of the first payment.
From the face of the note subtract the first payment. Compute the
interests for the time between successive i:ynents on the remainders
of the face of the note after subtracting the payments when they were
made. Continue this process until the time o}’naturity of the note.
Then the sum of the interests having accrued at that time is added
tg the residue of the face of the note. The sum is the maturity value
of the note.

Let it be observed that in the case of the Merchant’s Bule no inter-
est is added before all the payments have been made, and that in this
fact lies the difference in the results obtained by the two methods.

Suppose we use the Merchant’s Rule in a problem in which p = the

face of the note; r = the rate of interest; p,, py, P3, -+ P, = the
1lst, 2nd, 3rd, ... and nth payments, respectively; i,, i,, iz, «. U
the interest computed for the 1lst, 2nd, 3rd, ... and nth periods,

respectively; t,, ty, tg, eoey B, = the time between payments, re-

spectively. Hence the maturity of the note is
(1) A=P=-p =py=pg= oo mp, *i i, izt In.

However, if we use the United States Rule, and let I,, I,, I, ... 1;

be the interest computed for the lst, 2nd, 3rd, ... nth periods re-
spectively, the maturity value will be

(2) A'gp-p'-pz-p3-occ-pn*I'+Iz+Ia+caa+Inn

If equation (1) is subtracted from equation (2), we have an expression
for the difference in the maturity values by the two methods:

(3) A' - A=T - i, +I,-i,+I;=ig+ ...+I =i,
And since I, = Prt,, i, = Prty; I, = (P + I, - p,)rt,, i, = (P - py)rty;
I,=(P+1I,+1I,-p, -p,)rt,
= (P - p, = pyrtyg + (I, + I,)rt,,

ig= (P=p, = prtg; ... ;
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I=(P+I +1I,+. ...+, 1= py =Py ~eee=paylre,

= (P-P'-Pz-bho pn-')rtn*(I"’Iz* LRI ’In-')rt-',

i, = (P=py =Py = oo ppoydrt,,
(4) A' - A = I'rtz + (I' + Iz)rts + (I‘ + Iz * Is)rt4 + LI ]
+ (I' + Iz + . In-l)rtu.

In order to take care of the case in which the interest is greater
than the payment, let the rth interest be greater than the rth pay-
ment. We compute the interest on the remainder after the (r - 1)th
payment has been subtracted up to the time at which the sum of the
payments not having been subtracted equals or exceeds this interest.
Then compute the interest on the balance as aforesaid. The maturity
value in this case is

A' =P+ Il + Iz + e Il'-l + e III‘l"‘l “ Py T P2 " cuo“‘pn

in which ® is the number of payments after the (r = 1)th up to the
time at which the sum of the payments not having been subtracted
equals or exceeds the interest not having been added.

For the trivial case in which r is zero, t is zero, or both are
zero, A’ = A; for r and t equal to any positive value, however small,
P’can be made sufficiently great to make A’ - A as large as we please.
1f, for example, r = 0.1%, t, = 1 day, and ¢, = 2 days, and P =

$360x180x1, 000,000,000, since I,rt, = Prit,t,, the first part of the
difference (4)

A' - A= 0)(180)x1,000,000,000(.001)2 L _L
($360)(180)x1, , , ( ) 560 180

or A' - A = $1000. However, it should be remarked that in the cases
of practical importance, the differences in the maturity values
computed by the two methods are insignificant.

Oklahoma A. and M. College
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CURRENT PAPERS AND BOOKS

Edited by
H. V. Craig

This department will present comments on papers previously pub-
lished in the MATHEMATICS MAGAZINE, lists of new books, and book
reviews.

In order that errors may be corrected, results extended, ard inter-
esting aspects further illuminated, comments on published papers in
all departments are invited.

Communications intended for this department should be sent in dup-
licate to H. V. Craig, Department of g;plied Mathematics, University
of Texas, Austin 12, Texas.

Number Theory and its History, by Oystein Ore, New York, McGraw-Hill
(1948) 370 pages, $4.50

This book deals with the principal ideas of elementary number
theory in the order of their historical development, beginning with
the counting processes of savages, and ending with Gauss’ theory of
the ruler and compass construction of the regular heptakaidecagon.
As history, it is far more interesting than the usual elementary
historical text, since the author explains the mathematical ideas
whose development he is tracing in sufficient detail so that the
reader can grasp their significance. Considered as a text on elementary
number theory, the space given to historical treatment precludes the
inclusion of much material usually considered essential. For example,
there is no account of the quadratic reciprocity law, continued frac-
tions, numerical functions and their inversion, quadratic forms,
Bernouilli numbers.

These ommissions are unfortunate of course, but deliberate.Prof-
essor Ore has adopted a rather novel viewpoint for a mathematical
author; he has assumed both the existence of other accessible books
on his subject, and the existence of readers of sufficient intelligence
and maturity to refer to these books if they should desire more inform-
ation.

The strongest feature of Ore’s ‘Number Theory’ is that it has
something fresh to say about almost every subject it treats. These
subjects range from historical topics such as recent discoveries
in Chaldean trigonometry to Axel Thue's beautiful proof of Fermat’'s
theorem on the representation of primes as sums of two squares. There
is a sketch of the basic ideas of lattice theory and up-to-date in-
formation on methods of factoring large numbers. The treatment of
congruences is very full and clear.

The book should be of interest to amateurs in the theory of numbers,
teachers and prospective teachers of mathematics. Although it is not
a formal text book, it could very well be used for a ‘survey’ course
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for non-mathematicians or for a teacher’s training course, particularly
if the instructor would supplement it slightly.

The book is lucidly and entertainingly written. Professor Ore has
a quiet humor which is in refreshing contrast to the labored facetious-
ness which many recent authors of elementary surveys have felt bound
to impose upon themselves, and upon their readers.

Morgan Ward

Solid Geometry. By J. S. Frame, McGraw-Hill Book Co., 1948, 19 plus
339 pages. $3.50.

The phases of solid geometry which are primarily emphasized in
this text are solid mensuration, and the drawing of figures. The
concept of a proof, though included in the text, is relegated to a
position of minor importance. In fact many of the proofs are left
as exercises for the student, and thereby could be worked either by
the student, or the teacher, ar omitted.

The book is divided into four parts of ten chapters each. The
headings of the various parts are Linear and Angular Measurement
in Space, Solid Mensuration, The Sphere and Solids of Revolution,
and Projections and Maps. The material covered in the first twenty
five chapters could be said to contain the material covered in the
customary short course in this subject. The remaining chapters could
be used for special reports, or for additional content for a longer
course in Solid Geometry.

In addition to the traditional solid geometry which is included
in this text, one finds an introduction to the study of vectors,
the introduction of the cosine of an angle as a projection factor,
chapters on the celestial and terrestial sphere, and a few properties
of the conic sections which are developed synthetically when the
plane sections of cones and cylinders are studied. Much space is
devoted to and many rules are given for the drawing of the projections
of space figures.

At the end of each chapter is a list of oral exercises which should
prove stimulating to the superior student. There are also lists of
problems for written work, most of which involve either numerical
computation or the drawing of a specified figure.

Throughout the text many situations are described, which involve
statements which to the sophisticated reader demand proof. Also,
certain terminology is occasionally used, such as additive measure,
or linear space, which might cause difficulty to the immature student.

For those who want a text in solid geometry with a minimum of
proof, and a great deal of numerical computation and drawing of
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figures, this book should prove to be a satisfactory text. For those
who expect a book on Solid Geometry to emphasize postulates, axioms,
and synthetic proofs, which traditionally occur in a course on this
subject, this work would probably not meet with their approval.

R. G. Sanger

Solid Analytic Geometry. By Adrian Albert, McGraw-Hill Co., 9 plus
162 pages. $3.00.

In this book an attempt is made to develop some of the concepts
of Solid Analytic Geometry by means of vectors and matrix theory.
Thus, utilizing the concept of a vector, certain formulas involving
planes and lines can be developed in a neat manner, and utilizing
matrices, the problems involving transformation of coordinates can
be related to certain phases of matrix theory.

The text is very tersely written, and additional illustrative
examples and figures could be used to good advantage in many places.
There is at least one place where an algebraic equation is broken
at the end of a page, and at least one place where a short matrix
equation is broken at the end of the line. Such things, together
with the inevitable misprints which occur in the first printing of
any work, do not make the book easy reading.

There are nine chapters in the book, the first five of which include
material on planes, lines, and quadric surfaces in standard position;
material traditionally included in a first course in this subject.
The sixth chapter is on matrix theory, and the seventh deals with
the problem of rotation of axis and classification of quadric surfaces.
The last two chapters deal with spherical coordinates and the elements
of projective geometry.

The main objection to this work is not that it is concisely written,
but that much is omitted which one would expect to appear in such
a book. Some of these omissions are noted in the following paragraphs.

Nowhere in the preface or in the text is there any indication
what mathematical background a person should have before attempting
to read this book with understanding.

In the first two sections vectors ,and the ideas of linear independ-
ence and dependence are introduced, but practically no indication
is made of the geometric or physical significance of a vector, and
no algebraic criterion is given or implied whereby a student could
tell whether or not two vectors were linearly dependent. In the next
section a dot or inner product is introduced and an expression 1is
given for the cosine of the angle between two vectors, yet no geo-
metric interpretation of this expression is made until some sections
later. Nowhere is the vector cross product introduced, nor are any
geometric properties given which can be concisely formulated utilizing
this concept. Also, in the development of equations of tangent planes
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to surfaces, no use is made of vectors.

Most of the exercises in the text are very formal in nature, in
general, either consisting of substituting in formulae already devel-
oped, or of working out a parallel theory [ur a slightly different
case. There are no problems involving the concept of a locus, and
none involving a geometrical analysis of a particular situation.

Figures illustrating the geometric significance of the theory
are rare. There are no figures in the chapters headed Surfaces and
Curves, Spheres, Rotations of Axis and Applications, and Elements
of Projective Geometry. There is only one figure in the chapter dealing
with planes.

When equations of lines in symmetric form are given, the number
zero appears in some denominators, and, though there immediately
follow equivalent relations which are stated as valid (without too
much explanation), the effect on the average student of seeing such
things in print leaves much to be desired.

In defining the angle between two planes, it is stated that such
an angle is not uniquely defined if either plane passes through the
origin. This is consistent with the definitions in the text, but is
not with the geometrical situation, yet no attempt is made to clarify
this point.

Nowhere is the concept of determinant used in the main portion
of the text, though they are discussed in the latter part of the
sixth chapter. Thus, the concise determinantal formulae for the equation
of a plane through three non-collinear points, or spheres through
four non-coplanar points are omitted.

In the study of the reduction of the general equation of a quadric
surface to canonical form, matrices are used and the problem is assoc-
iated with that of reduction of quadratic forms to canonical types.
Nowhere is the rank of a matrix used, or are the invariants, assoc-
iated with the equation of the quadric under translations or rotationms,
with the exception of the roots of the characteristic equation,
mentioned. This is to be regretted, since the concept of rank of a
matrix can be advantageously used both in questions of linear depend-
ence and in the problem of classifying the quadric surfaces in a
systematic manner.

In the chapter on spherical coordinates, the traditional names
for the coordinates, P, 8, ¢ are disgarded. No applications of a
practical nature are made, though one or two are vaguely suggested.
Similarly, in the chapter on Projective Geometry, projective coor-
dinates are associated with vector spaces, and projective trans-
formations with matrices, but there is no indication as to what a
projective geometry is, or what it might be used for.

As the book is tersely written, is lacking in illustrative examples,
and also lacks figures to aid those who are visually minded, it is
doubtful if the average student would gain much by trying to read
this book independently.
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In the study of geometry, certain tools, such as vectors, matrices,
and derivatives, may be used in the development of the geometric
theory. In this work, there are spots where the study of the properties
of the tools used are definitely emphasized, the geometric aspects
of the situation being relegated to a secondary position.

R. G. Sanger

Comments on and additions to H. V. Craig’s paper ‘On Extensors and
the Lagrangian Equations of Motion’, Vol. XXII No. 5, March-April
of the Mathematics Magazine. By C. W. Horton.

1. Introduction. In a recent paper H. V. Craig has shown how the
Lagrangian equations of motion may be derived from a simple extensor
equation relating the primary extensors associated with kinetic and
and potential energies. His development is confined to conservative
forces which may be represented by a potential function. Although
this covers the majority of cases, it is of interest to remove this
restriction and to inquire if an equally simple basis may be found
for the equations of motion for non-conservative forces.

2. The excovariant force function. Suppose that the forces acting
on the particles in the system may be represented by a covariant tensor
Q,. The sense of the components of Q, are such that they are positive

when the force is directed along positive x®. Consider the set of
quantities Q,,(a = 0, 1) defined by

%, = Q
Qla: 0 (1)

and inquire whether or not they constitute an extensor of range 1.
The extensor transformation law

a.l?r' = Qaax:: (2)

gives, for the case p = 0,

V] 1
QOr = Q0¢X0: * Q|¢X0: (3)
By equation (1) the Qla are zero so equation (3) reduces to
0 = o = = )
Qbr QOaX0: Q¢X: Qr (4)

Since Q

a
When ¢ = 1, equation (2) becomes

1s a covariant tensor of order 1.
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Q, = QX0 + Q, Xi2. (5)

Now X super Oa inf 1r vanishes since x*® is a function of only those
xP" for which p < a. The Q,, vanish by equation (1), and hence, Q= 0.
Thus it is seen that the Q,, constitute an excovariant extensor of
range 1.

3. The heuristic formulation. The heuristic formulation of
Dr. Craig may now be modified to read:

(a) The important functions are the kinetic energy T(x,x'), which
is homogeneous of degree two in the x’’s, and the excovariant force
function Q,, of range !. It is assumed that a linear relation between
the primary extensors associated with T and with the force extensorQ,
holds along a trajectory.

(b) The increase of T along a trajectory is equal to Q x'®. This
has the simple physical interpretation that the increase in the kinetic
energy is equal to the work done by the forces.

(c) The extensor component of functional order two, namely, Tba
must be present.

These assumptions lead to an extensor equation of the form

Taa + AT, ,, + BQ,, = 0. (6)
The rank of equations obtained when a = 1 will be satisfied identically
if A= -1 since Ty, = T . ,- When a = 0, one has, since Ty, = 7;|a',
Toa' - Tioq * B, =0. (1

When this equation is multiplied by x'?, it can be reduced to
T' + BQoax'“ =0,

The details of the analysis are given in Dr. Craig’s paper. Assumption
(b) requires that B = -1, and, consequently, equation (7) becomes

T',‘a' - T,'Oa =Q0¢ =Qa (8)

which is identical to the form of the Lagrangian equations given by
Whittaker?.

BIBLIOGRAPHY

1. H. V. Craig, On Extensors and the Lagrangian Equations of Motion

2. E. T. Whittaker, Analytical Dynamics, p. 37, Dover Publications,
Inc., New York, 1944,

The University of Texas


http://www.jstor.org/page/info/about/policies/terms.jsp

PROBLEMS AND QUESTIONS
Edited by

C. G. Jaeger, H. J. Hamilton and Elmer Tolsted

This department will submit to its readers, for solution, problems
which seem to be new, and subject-matter questions of all sorts for
readers to answer or discuss, questions that may arise in study,
research or in extra-academic applications.

Contributions will be publisﬁed with or without the proposer’s
signature, according to the author’s instructions.

Although no solutions or answers will normally be published with
the offerings, they should be sent to the editors when known.

Send all proposals for this department to the Department of Math-
ematics, Pomona College, Claremont, California. Contributions must be
typed and figures drawn in india ink.

SOLUTIONS

In addition to those listed in the March-April 1949 issue, the
following also solved Problem No. 27: G. W. Courter, Baton Rouge, La.;
W. R, Talbot, Jefferson City, Mo.; G. B. Knight, Oak Ridge, Tenn.

No. 24. Proposed by C. N. Mills, Normal, Illinois.

Given the quadratic form %2 - x + N where N =2, 3, 5, 11, 17, 41.
When x = 1, 2, ...(N - 1) each of the resulting numbers is prime.
Are there other values of N?

D. H. Lehmer has shown that there is at most one other value of N
and if it exists it exceeds 1,250,000,000. (Sphinx, 1936, pp.212-214).
This is referred to in Coxeter's edition of ‘Rouse Ball’ Mathematical
Recreations and Essays p. 62.

Leo Moser, Winnipeg, Canada.

No. 29. Proposed by Norman Anning,Ann Arbor, Michigan.

Given that n is any positive integer greater than 1, show that the

1+y (L*+=x" : : :
curve 7 b has three and only three points of inflexion.
-y - x

Solution by W. R. Talbot, Jefferson City, Missouri.

The given equation f(x,y) = 0 may be written explicitly in y as

‘(l + )8 - (1 - x)"
(1 +# 2)" + (1 - x)n°

Y

In this form it is readily seen that the curve has symmetry with
respect to (0,0). It is sufficient to consider only x > 0. In terms
of logarithms, the given curve f(x,y) = 0 may be written as
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1+ y 1+ x
In = nln O
1 -y l1-x
so that
y'= n 1 yz
1 - x2
and

y' = -2y (ny - x).

If y" = 0, then y' = 0 and ny - x = 0. If y' = 0, then y = %1 and
from f = 0, x = £1. Consider values of x slightly less and greater
than 1. If n is even, y < 1 for these values of x; so that (1,1)
is a bend point. If n is odd, y < 1 when 0 < x < 1, but y > 1 when
x > 1; so that (1,1) is an inflexion point. By virtue of symmetry
(-1,-1) is an inflexion point if n is odd.

It remains to be shown that ny - x = 0 has precisely three roots
if n is even and only one root if n is odd. Let g(x) denote the result
of substituting the explicit value of y above into ny - x. Then
glx) = 0 is

1+ x)*n-x)-(1-2x)n+zx)=0.

Since g(0) = 0, (0,0) is an inflection point.

Let n be odd. Then for 0 <x < n, g(x) > 0. Dividing g(x) by n and
allowing n to become exceedingly large is equivalent to evaluating
(1 +x)" - (1 - x)*, which is positive. Then if n is odd, ny - x = 0
has no root other than (0,0).

Let n be even. We find g(1) > 0, g(n) < 0 indicating a root
between 1 and n, and from symmetry, one between -1 and -n. If x > n,
g(x) < 0 because both (1 + x)®(n - x) and -(1 - x)*(n + x) are negative.
Then, there is no root beyond x = n (or -n). Whether n is odd or even,
there are precisely three points of inflexion.

Solved also by Leo Moser, Winnipeg, Canada.

No. 30. Proposed by VictorThebault, Tennie, Sarthe, France.

Given a circle (0), of center O, tangent to two rays Ax and Ay.
A varisble tangent meets Ax at B and Ay at C. Show that each of two
sides of the triangle which has the orthocenters of triangles AOB,
BOC, COA as vertices pass through fixed points, and that the third
side has a conic as its envelope.

Solution by O, J. Ramler, Catholic University.
Let the fixed circle (9) be tangent to BC, CA, AB at A', B', C',
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respectively, and let the orthocenters of triangles AOB, BOC, COA be
H,, H, Hy respectively. Then H, and H, move on the fixed lines B'0

and C'O as side BC envelopes the circle (0). Moreover H,C and H_B

are each perpendicular to the fixed line OA. Since B and C are corres-
ponding points in projectively related ranges of points on Ax and Ay
respectively, it follows that H, and Hc are corresponding points in

projectively related ranges of points on the fixed lines OB' and OC'.
Hence H,H_ envelopes a conic which is a hyperbola having OB’ and OC'

as asymptotes because the axis of homology for the projectively related
ranges on OB’ and OC' is the line at infinity. Now H, and H_ uniquely

determine Ha. Hence H H, cuts Ay in points Y projectively related
to H,. Now when triangle ABC degenerates so that C is at B, B will
be at A and H, will be at B'. Then Y will also be at B'. Hence since
B' is self-corresponding, the lines YHb will not envelope a proper
conic; they will pass through a fixed point, i.e.H H and similarly
HCH; pass through fixed points. When B is at infinity on Ax, A'OC’ is
a diameter of circle (0), H, will be at O, and H, will lie on oc'.
Hence the fixed point through which H H, passes lies on OC’. When
C is the point where C'O cuts, Ay, Ha and Hb each lie on Ay. Hence
the fixed point is C’'. Similarly H H, passes through B'.

No. 32. Proposed by Victor Thebault, Tennie, Sarthe, France.

Find all the four-place numbexs abcd and aecd which are perfect
squares.

Solution by W, R, Talbot, Jefferson City, Missouri.

Let abcd = m? and aecd = n?2. From m® - n2 = 100(b - e), it follows
that both m+ n and m - n are even. If m? and n? are different, then
64 <m+n<198. Ifb - e =9, the maximum value of m - n is given
when @ = 1; thus m - n is an even number less than 11. If m = n = 2,4,
or 6, m + n may be 100 or 150. If m - n= 8, m + n = 100 while
m - n = 10 does not lead to any solutions. Of the possible values
of (m,n), only m-n=6 and m + n = 150 is unacceptable, and the solu-
tions are

(51,49) 2601, 2401 (52,48) 2704, 2304 (53,47) 2809, 2209
(76,74) 5776, 5476 (77,73) 5929, 5329 (54,46) 2916, 2116
Solved also by Leo Moser, Winnipeg, Canada.

No. 34. Proposed by Victor Thebault, Tennie, Sarthe, France.

Find a number of four digits such that its square ends with the
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same four digits in the same order. Show that its cube and its fourth
power have the same property.

Solution by Leo Moser, Winnipeg, Canada.

All powers of 9376 end in 9376.

The theory of automorphic’ numbers is well known. It is discussed
in some detail in Kraitchik, Mathematical Recreations pp. 77-78 where

it is shown that the following two numbers are automorphic.
3,740,081,787,109,376
6,259,918,212,890,625

The fact that the second of these ends in 0625 disqualifies it as
a solution to the problem as stated.

No. 35. Proposed by Victor Thebault, Tennie, Sarthe, France.

A plane P divides the volume of a sphere into two parts V and V'
and determines two spherical segments of areas S and S'. If it is

S | 4

5 = k, calculate the ratio Z— in terms of k.

4
Solution by Leo Moser, Winnipeg,.Canada.

known that

Take the radius of the sphere to be 1 + k and cut it by a plane
a distance k from the top. The ratio of the areas of the segments will
then be k:1, and a simple calculation using the well known formula

h
for the volume of a spherical cap, volume = g(3a2 + h?), yields

12 k2(3 + k)

V' (3k+1)°

PROPOSALS

37. Proposed by Leo Moser, Winnipeg, Canada.

I would like to propose the following problem. (Suggested by game
of Russian Billiards).
Given 5 points in or on a 2X1 rectangle. Show that the smallest

distance determined between any 2 of them is < 2/2 - V3 and that this
is the largest number for which the result is true.

38. Proposed by Leo Moser, Winnipeg, Canada.

Show that 5 or more great circles on a sphere, no 3 of which are
concurrent, determine at least one spherical polygon having 5 or more
sides.

39. Proposed by Leo Moser, Winnipeg, Canada.
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(i+ 1" -1 .
ij G , 11,2 ...n,j 1
Show that the nth order determinant lAijl =1+

Let A

2 ... n.

+

N -

40. Proposed by Pedro A. Piza, San Juan, Puerto Rico.
Let x be a positive integer and S, = 1 + 2" + 3" + 4" + . + x".
Prove the, following Pythagorean relations:
(485, + 1605, + 485, + 1)% = (8S, + 245,) + [(4s,+125,)” - 1]%.

(645, + 4485, + 448, + 645, + 25)% =

2 _ 2
(160S, + 160S,) + [(16S, + 165;)? - 251°%.

41. Question by Raymond L. Krueger, Wittenberg College.

I wonder if you can tell me anything about the following problem.
It was sent to me by a former student and we do not know the original
source nor can we seem to interpret it correctly.

3 children: one has lived a diminished evenly even number of years,
another a number also diminished, but evenly uneven, while a third,
an augmented number unevenly even. What are the ages of the children?
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TEACHING OF MATHEMATICS

Edited by Joseph Seidlin and C. N. Shuster
VARIETY OF MATHEMATICAL EXPERIENCES*

Harold E. Bowie

American International College, being the only co-educational college
of Arts and Sciences in Springfield, considers its function to be
that of a Peoples’ college. As to mathematics, we require a year
of algebra and a year of plane geometry for entrance. Some candidates
with prospective ability are admitted without these courses and com-
plete them later in our summer session or elsewhere.

Those who plan to major in mathematics or one of the natural
sciences are expected to come to us with at least a third year of
high school mathematics. We give a three semester hour course in
intermediate algebra for those who enter with the minimum requirement.

As we do not require any mathematics on a college level, the two
courses required for entrance are terminal for the majority of our
students.

In the double track plan it is very important, I think, not to
lose sight of the individual. An early determination as to whether
one will make a good mathematician is difficult in many cases, both
for him and his advisers. We have had a number of cases of students
who came to us with little or no secondary school mathematics who
majored successfully in the svhject by doing summer work or staying
on for a fifth year.

Without the rather unusual program which A. I. C. has set up to
take care of such cases, some of our good mathematics people would
be eliminated. Generally, students of college age dislike to take
these courses with the younger pupils in the high schools. In using
the double track or any other plan, provision should always be made
for switches along the way.

A little fanning of the flame is a good thing for those who show
natural interest in our subject. Many students have been influenced
to continue their mathematics by the enthusiasm of some teacher. We
are in a field for which we do not need to apologize and should give
encouragement to those who show interest in it. The world needs them.

Often the work in hand may be used as a point of departure for
digression into the uses, history, and scope of the subject. For
example, I never discuss the ellipse withour saying a little about
Kepler, Newton, and Einstein. Not everything I say is understood
fully, even.by myself, but many a good mathematician has started his
career under the influence of such inspiration.

Many of my students say that they didn’t learn algebra until they
used it in the calculus. The better students overcome this weakness
in their background without too much difficulty. The mediocre ones

*Paper read at the spring neetins of the Conn. Valley Section of the Assoc.

of Teachers of Math. in New England at Suffield, Connecticut, April 23, 1949.


http://www.jstor.org/page/info/about/policies/terms.jsp

40 HAROLD E. BOWIE

have a hard time. The poor student is sunk. These pupils readily admit
that one reason for their lack of preparation was that they didn't
study.

Too hard or too easy standards of marking may cause students to
stop studying. No student should be given credit in a course until
he attains a certain minimum of achievement. I have seen many do a
good job on a course with a second attempt. One pupil who failed in
every period of plane geometry came back the next year with all A’s,
and is now an excellent teacher of mathematics.

Lack of variety of experience in high school and early college
courses is a source of some difficulties. In practice with the four
fundamental operations, many situations with respect to signs and
symbols should be included. Zero is a number which confuses most
students, even when they have reached quite advanced work. This is
not strange, as zero is involved in the only fundamental operation
which is undefined.

Telling the student that division by zero is undefined is not
sufficient. Sets of exercises should include those involving zero
terms, factors, numerators, and denominators, so that he may learn
to readily recognize the impossible situation. He should have experi-

1 1 - = =
ences with such expressions as % when x =0, G when x = 2, and
( ) when x = y. these expressions have no meaning in an ele-
x -y

mentary sense under the conditions given.

Upon reading the last paragraph aloud, I found myself saying ‘one
over x' for ‘one divided by x’. During my first years of teaching,
the dean and former head of the department of mathematics at my Alma
Mater visited our high school on a student recruiting mission. He
and the professor with him spent the evening at my home. During the
conversation, which naturally turned to talking shop, he pointed out
emphatically that one should never say ‘over’ for ‘divided by'. Being
guilty of this fault myself, I was somewhat embarassed. As a teacher
I have found that many such early habits have to be overcome.

I still like ‘over’ for ‘divided by’ and use it in conversation
with those of sufficient mathematical maturity not to be confused.
It is shorter. These short cuts are dangerous with beginning students
who have not become sufficiently familiar with the symbols involved.

It is not well, however, for us as teachers to accept ideas be-
cause they have been printed in some book or stated by some authority.

As a part of my graduate work, I was required to visit a class
in a large city high school. The work in hand was the solution of
linear equations. The teacher was having a bad time of it. She was
religiously adhering to an artificial, involved scheme that had been
presented in a course in the Teaching of Mathematics the preceding
summer. Too much time used with a few pupils caused the rest of the
class to lose interest, and the period ended in confusion with little
done. She was quite discouraged and asked me what I thought she could
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do. I advised her to abandon the idea and return to well-tried methods.
The scheme was doubtful with any class and impossible with a large
class.

Speaking of tried methods reminds me that one of our campus weekly
reporters once asked me what I was going to talk about. Not knowing
at the time, and wishing to give him some title, I said the first
thing which occurred to me, which was ‘The Double Track Plan’. It
appeared in print later as ‘The Durable Track Plan’. Now I am wondering
whether this would make a good subject for study.

One of the hurdles which slows the calculus student is the handling
of complex fractions. I seem to remember having read somewhere in
educational literature that practice with complex fractions was time
wasted. Such is not the case. There are many problems in calculus,
for example, which involve fractions of various levels of complexity.
Thus the differentiation of tan ; requires simplification of a fraction

of medium difficulty, while the differentiation of tan (_5%-IT pre-
x

sents a more challenging situation.

The average calculus student needs to be skillful with these
fractions so as not to be diverted from the many new concepts to be
learned. Practice with various forms of complex fractions should be
included in the algebra courses and should be repeated at intervals
throughout the mathematics program.

These and later considerations would underline the fact that there
is a minimum of training that is desirable for all mathematics teachers.
This matter has been given serious attention by the Joint Commission
of the Mathematical Association of America, Inc., and the National
Council of Teachers of Mathematics. Their conclusions are found in
their report on the Place of Mathematics in Secondary Education in
the Fifteenth Yearbook, issued in 1940'.

These recommended requirements in mathematics include a year of
calculus, a brief introduction to projective and non-Euclidian geo-
metry, using synthetic methods, advanced algebra, and history of
mathematics. Recommended requirements in natural science and education
are also listed as well as further desirable but less critical needs.
Some of us taught high school mathematics for a time with fair results
without all of these requirements. There is no doubt, however, that
we did better work after getting a solid background.

Experiences with the handling of expressions involving a fixed
constant base and literal exponents are necessary. Students have
trouble multiplying in such cases as 2"(2**' - 1). Factoring and
division with such quantities is even more perplexing. Often students
who have this trouble can handle similar operations with a literal
base and numerical exponents successfully. Considerable practice

‘Fifteenth Yearbook of the National Council of Teachers of Mathematics

(New York: Bureau of Publications, Teachers College, Columbia Uni-
versity, 1940) pp. 201-202.
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with fixed constant base and literal exponents is incidental to the
usual sets of exercises in mathematical induction. For example,

prove by mathematical induction that 1-2 + 222+ 3224+ ., 4+ 2" =

2 + (n - 1)2"*!" where n denotes a positive integer.

Mathematical induction is hard to teach to high school students
or college freshmen. Previously gained familiarity with the methods
of simplification involved still leave enough concepts hard to grasp.
The understanding of mathematical induction itself requires a variety
of experiences. The usual set of problems found in most college
algebras involve a proof requiring the addition of something to both
sides of an equation and are always true. Problems where some other
operation is performed on both sides or which are not true may be
provided by the teacher.

C. S. Carlson gives six exercises that are true for n = 1,2,3,4,
but fail for n = 5, in the National Mathematics Magazine for Octo-

ber, 1944%.

Ability to insert parentheses where they will be advantageous and
to remove them when they have served their purpose is indispensable
to the student. It enables him to free his mind from the details of
simplification and to concentrate on basic principles until a later
or final step. It will occur to some that here is the place to learn
about parentheses. That is, to wait until they are needed.

It is true that skill will be maintained and increased incident-
ally at this point. However, the game must not be delayed very much
or the whole situation becomes dlsagreeable to the student. For
interest to be maintained while a student is integrating sin 0 far
example, results must be gotten without being held up for long by
side issues.

Simplification of complex expressions with radicals, and fractional
and negative exponents involved are good preparation for later work.
Throwing an expression into a good form for differentiation or integ-
ration often requires a change from radical to exponential form or
vice versa, or the changing of an expression from numerator to de-
nominator or the reverse.

Some of the properties of proportions studied in elementary algebra
and geometry and then abandoned for so long that they are almost
entirely forgotten may become incidental to the work of later courses.
This lapse of time between the last mathematics course taken in high
school and the beginning.of college mathematics and science seems
to be one of the unsolved problems of curriculum making. The lapse
is often one or two years. Another problem of the curriculum is that
many who follow mathematics do not get solid geometry because it is
not required in the high school and not offered in college. These
problems arise because many who will go into mathematics and science
do not know it when they are in secondary school.

C S. Carlson, ‘Note on the Teaching of Mathematical Induction’,
National Mathematics Magazine, Vol. 1 1944
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The importance of emphasizing functional relationships has been
deservedly emphasized in the literature. Practice with the symbolism
as soon as it can be understood is important and should be given
renewed attention from time to time. The student of college mathe-
matics needs to be acquainted with the shades of meaning attached
to f(x), f(a), f(2), #(x), F(x), etc. He should recognize quickly
whether f(x) is being used to represent a particular or general
function by the context. Early familiarity with these symbols will
free his mind for reasoning in whith their significance is incidental.

Some beginning calculus students will differentiate x2+ a? to
obtain 2x + 2a where the context should make it clear that a is a
constant. They ignore the fact that usually, although not always,
the first letters of the alphabet are used conventionally to denote
constants. The difference between an arbitrary constant and a vari-
able is a very subtle thing and requires good explanations by the
teacher and hard thinking by the student.

Exercises in which explanations written out in words predominate
over juggling of symbols are good to promote reasoning. It is not
uncommon for an entire class to differentiate a number ofdexprejmons

correctly and to balk unanimously when asked to show

dx dv dx’

It is well known that many of the troubles of mathematics students
with relatively difficult theory and problems comes from lack of
reading ability. The first requirement in the understanding of a
new bit of theory or a problem is a knowledge of what the words and
sentences mean. Frequent reading aloud by the student is helpful.
This reading may well replace some of the lecturing by the teacher.
Well-placed questions should insure a critical attitude and an attempt
to retain and relate the thought. An easy, informal atmosphere should
prevail, as one of tenseness may defeat the purpose of this method.

Plane geometry has fewer and less complex applications than al-
gebra in the usual undergraduate college courses. It can be more
readily reviewed as needed. I was surprised, however, in taking
up the trapezoidal rule with one class, that nobody knew the for-
mula for the area of a trapezoid and most had forgotten the def-
inition of this figure.

The chief value in the study of demonstrative plane geometry
lies in resultant training in deductive reasoning and consequent
increase in mathematical maturity.

Although meaning comes first, students should be encouraged both
to reason and to remember important facts. The student who does not
remember the principal identities of plane trigonometry, for example,
will have plenty of trouble with integration.

One of my students raised an objection to the fact that I con-
sistently lettered my triangles A, B, C. A former teacher had sold
him so completely on the necessity for reasoning that he felt one
should never use the same lettering twice. Mixing up the letters
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is a good thing while learning, but uniform lettering is best after
learning.

I like the following thought expressed by A. N. Whitehead on
this matter: ‘It is a perfectly erroneous truism, repeated by all
copy-books and by eminent people when they are making speeches,
that we should cultivate the habit of thinking of what we are doing.
The precise opposite is the case. Civilization advances by extending
the number of operations which we can perform without thinking about
them.’ 3

One of the difficulties involved in providing a variety of mathe-
matical experiences is lack of time. Time may be saved in some cases
by the substitution of planned incidental review for the formal
kind. Sometimes more time than is needed may be used on a topic.

The time allotted to mathematics may be too short. Work in an-
alytic geometry, calculus, statistics, and other subjects and topics
that will be taken in college should not take up time needed to
establish a good background for those who may go on in mathematics.
They are more properly material for the second track students who
will never get a chance to study them again.

It may be that more could be accomplished in fewer and longer
periods. We have found this to be true in college freshman mathe-
matics in summer school courses. The longer periods avoided the
necessity for starting over again on topics unfinished from the
preceding period.

If the textbooks in use do not provide sufficient variety of
experience, they should be supplemented. Material may be obtained
from notebooks kept in college courses, from the illustrative prob-
lems in college textbooks, and from other texts in the subject being
studied. Older textbooks should not be disregarded as a possible
source of needed exercises.

In conclusion, let us say that a good background for later work
in and application of the mathematics being studied at any parti-
cular time requires experiences with a variety of situations, that
the teacher should have had courses beyond those he is teaching
in order to know what situations are likely to be encountered, and
that time and materials should be made available for this purpose.

3A. N. Whitehead, Introduction to Mathematics, (New York: Henry Holt
and Company, 1939) p. 61.

American International College
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THE ELEMENTARY THEORY OF NUMBERS
E. T. Bell

This subject is so extensive, and so intricate, that only a bare
indication of a few of its simpler ideas can be given here.

1. Divisibility. The first concern is with the natural numbers, or
the positive integers, or simply the numbers, 1, 2, 3, 4, <<+, and their
the number n, written d|n, if there is a number q such that n=qd.
If d|n, n is called a multiple of d. If d|m and d|n, then d|(rm+ sn),
where r, s are any numbers (as defined above), and this d is called a
common divisor of m, n. If aln and bln, n is called a common multiple
of a, b. If g|n and dlg, then d|n. From these definitions we have those
of the greatest common divisor (G.C.D.) and least common multiple
(L.C.M.) of m, n as in school arithmetic, but with a diflerent twist.
It is not the magnitude aspects that are emphasized but the divisibility
relations. This is done because it is the procedure that generalizes
to types of integers other than the numbers 1, 2, 3, 4, -+, specifically
to algebraic integers. If g is a common divisor of m, n, and if every
common divisor of m, n is a divisor of g, then g is the G.C.D. of
m, n. If h is a common multiple of m, n, and if every common multiple
of m, n is a mltiple of h, then h is the L.C.M. of m, n. If the G.C.D.
of m, nis 1, m, n are called coprime or relatively prime. A practical
method for finding the G.C.D. of m, n proceeds from the theorem that
integers q, r, ¢20, 0<r<n can be found such that m = gn+ r. The
product of the G.C.D. and L.C.M. of m, n is mn, so that the L.C.M. is
known when the G.C.D. is. The properties of these two functions of
m, n have analogues in the rudiments of the theory of lattices and
Boolean algebra.

If p is a number other than 1 whose only divisors are 1 and p, p is
called prime, or a prime. It is to be noted that number here is still
natural number. It can be shown that every number other than 1 has at
least one prime divisor, and that the total number of prime divisors of
any number is finite. The next, which will not be proved, is less obvious
than it seems. If the prime p divides the product mn of the numbers m, n
then p divides at least one of m, n. This is used in proving that there
is no largest prime. For assume that P is the largest prime. Then the
product 2:3:5 -+« P of all the primes being divisible by each of them,
the number 2:3:5 ... P + 1 is divisible by none of them. Hence it is


http://www.jstor.org/page/info/about/policies/terms.jsp

46 E. T. BELL

either a prime, or is divisible by a prime greater than P. Either
possibility contradicts the assumption. This theorem is also stated
as the number of primes is infinite.

The fundamental theorem of arithmetic asserts that, apart from
permutations of the factors, a number other than 1 is uniquely a product
of primes. Proof is by what precedes and a contradiction. It follows
that a number n other than 1 is representable uniquely (up to permu-
tations) in the form p* «+- pJs, where p,, .., p, are different
primes and a,, .-+, @  are numbers (natural numbers). The divisors of
this n are all the numbers of the form p‘bI psbs , where 0<b; <aq;,
i=1,...,s; whence it followsimmediately that n has (a;+1) +-- (a +1)
divisors and that their sum is

P|a‘+' -1 sas+l -1

-1 -1
by b

Another function, ®(n), of the divisors of n, called Fuler’'s function
or the totient of n, is important in the study of divisibility. It is
defined as the number of numbers that do not exceed n and are prime to
n, and it is fairly easy to prove that, for n>1,

= 1 1
#(n) —'n(l—ﬁ‘—) (l—ﬁ:).

Either by convention or from the definition, #(1) = 1. It is a simple
exercise to prove that the sum of the totients of all the divisors of n
is equal to n. For example, n = 6; the divisors of 6 are 1, 2, 3, 6,
and $(1) = 1, #(2) =1, $(3) =2, P(6) =2; 1 +1+2+2=6.

By a few obvious changes in the wording, the results of this section
can be carried over to the set of all integers, ... -4, -3, =2, -1,
0, 1, 2, 3, 4, ... . The introduction of the negatives and zero is a
convenience. It can be, and has been, avoided, but at the cost of
intolerable prolixity. The natural numbers are the positive integers. It
will be clear in a given context whether an integer, unqualified, is
restricted to be positive.

2. Congruence. This concept leads to a vast theory having some
striking analogies with the theory of algebraic equations. The integers
a, b are said to be congruent with respect to the integer modulus m, or
congruent modulo m, and this is written

a=b mod m,

if m|€a-b) or, what is the same, if a, b leave the same remainder on
division by m. Since a non-negative integer must leave precisely one
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of 0, 1, ... , m-1 as remainder on division by m, the set of all
integers (positive, zero, negative) falls into precisely m mutually
exclusive sets, called the residue classes modulo m, with respect to
congruence mod m, all the integers in a particular class being congruent
to one another. These residue classes may be denoted by Gy, C,, ---,C__,
all the integers in C; being congruent to j mod m. They have an inter-
esting and simple algebra, which may be left to the curiosity of the
reader.

The relation of congruerce is symmetric, reflexive, and transitive:
ifa=bmodm then b=amodm a=a; ifa= bmodmand b = ¢ mod m,
then a = ¢ mod m. These are immediate from the definition, and the next
follow readily. If a = b mod m and f = g mod m, then at f= bt g mod m,
and af = bg mod m. By repeated applications of these, if Pfi) is a
polynomial in x with integer coefficients, a = b mod m implies
P(a) = P(b) mod m.

So far the analogy between equations and congruences is close. In the
next there is a radical diflerence. The equation P(x) = 0 is completely
solvable in the field of complex numbers; there may be no integer x such
that P(x) = 0 mod m, that is, the congruence may have no roots. The
analogy'is partially restored however in the theorem that if m is prime,
the congruence cannot have more incongruent (distinct modulo m) roots
than its degree. Again, a common factor may be cancelled from all the
coeflicients of an equation, while the example 3x = 3y mod 6, or
3(x-y) = 0 mod 6, shows that if 3 is cancelled, then x-y = 0 mod 2.
Generally, if ax = ay mod m, and if d is the G.C.D. of a, m, then
x = y mod m/d. This is used in the following proof of what has been
called a cornerstone of the theory of numbers.

Let b be an integer prime to the positive integer m; write the
totient #(m) = s, and denote by b,, -+ , b, the s positive integers
not exceeding m and prime to m. Py a contradiction it is proved that the
s products bb,, ... , bb, are congruent modulo m, in some order, to
b,, -++, b,. Hence bby -+ bby = b, -+ b mod m. The product b, --- by,
being prime to m, may be cancelled. Thus b*(®) = 1 mod m. If m is the
prime p, ¢(p) = p-1. Hence if b is not divisible by the prime p,
bP=1 _1 jis divisible by p. These two theorems and their proofs are
typical of many in the theory of numbers. Each might be inferred from
empirical evidence; each is simply intelligible; the device which yields
the proofs might—as it did—elude the ingenuity of first-rate mathe-
maticians for many years. The result pl(bp" -1), p prime, b not
divisible by p, is called Fermat’s theorem. It is of importance in
algebra, for example in the theory of binomial equations.

Fermat’s theorem leads to the subject of primitive roots. It has
been seen that 6%(®) = 1 mod m for b prime to m. There may be a positive
exponent e < $(m) for which ° = 1 mod m. If e is the least exponent for
which the congruence holds, b is said to appertain to the exponent
e modulo m. It is quite easy to show that there are exactly ®(e)
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incongruent (distinct modulo p) numbers modulo the prime p appertaining
to the exponent e, where e is any divisor of p-1. For e = p-1, there
are thus @(p-1) roots appertaining to the exponent p -—1; these are
called the primitive roots of p. By a theorem stated earlier concerning
@, Sp(e), where e ranges over all the divisors of p-1, is equal to
p-1. This may be used in prov1ngthetheorem concern1ng primitive roots.

Another application of the result b ®(n) = 1 mod m is to the solution
of the congruence ax = b mod m, where, by an earlier theorem, @, m may
be taken coprime. There is the evident but not very practical solution

= ba®(®) -1, But the congruence may be replaced by the equivalent
equatlon ax+my = b. Euclid’s algorithm for the G.C.D. leads to the
conversion of a rational fraction into a continued fraction. The
penultimate convergent to the continued fraction for a/m (or m/a,
whichever is the smaller in absolute value) furnishes a solution of
ax' +my’ =1; x = bx', y = by’ is then a solution of the equation.

A corollary to Fermat's theorem furnishes a necessary and sufficient
but unusable condition that a given number be prime. For that
zP=' =1= 0 mod p (prime) has exactly p-1 incongruent roots mod p,
namely x =1, 2, ... , p-1, is the content of Fermat’s theorem. Hence,
identically in x,

P 'o1= (x-1)(x-2) «++ (x=p+l) mod p.

For x = 0 and the prime p odd, this becomes (p-1)!+1 = 0 mod p, which
evidently holds also for p = 2. This is Wilson’s theorem: for every
prime p, p divides (p-1)!+1. The converse is readily proved. Hence a
necessary and sufficient condition that p be prime is that p divide
(p=1)!'+1. Fermat’s theorem also has a converse. If there is an integer
x such that z*=' = 1 mod m, while for no exponent e<m-1 is x¢ = 1
mod m, then m is prime. This has proved usable in certain tests
for primes.

With increase in the degree of congruences the difficulties in solving
them, or even in deciding whether they have solutions, increases
rapidly. Many of the questions raised by such problems are still far
from answered. Congruences of the second degree in one variable (or
indeterminate) x lead to what Gauss called the gem of arithmetic. To
exhibit it, some definitions are necessary. If r, m are coprime integers
such that the congruence %2= r mod m has a solution x, r is called a
quadratic residue of m; if there is no such x, r is a quadratic non-
residue. Legendre’s symbol (L) denotes +l or -1 according as r is a
quadratlc residue or a quadratlc non-residue of m. Let p, ¢ be odd
primes. The following are almost immediate.

the second is obtainable from Wilson's theorem, among several other ways.
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The next, the law of quadratic reciprocity, the gem to be displayed, is
not easy to prove unless one has been shown how:

EYd) = (-1 xi(g-1)

There are many proofs.

Congruences of degree higher than the second suggest the investi-
gation of further reciprocity laws. All this belongs to the advanced
part of the theory of numbers where even a competent man might spend the
better part of his life without getting very far.

From the few theorems described, it may be surmised that a very
considerable part of the theory of numbers is concerned with primes and
their properties. Some apparently sensible questions concerning primes
have not been answered; others have, more or less. For example, how many
primes are there less than x still awaits a usable solution, if one is
attainable. Asymptotically, the number of primes not exceeding x is
x/log x. Only one unsolved problem on primes will be mentioned here,
because it is the only one of many that conceivably might yield some-
thing to elementary ingenuity. Is the number of so-called Fermat primes

22n-+1 finite, or is it infinite? For the connection of these primes
with cyclotomy, see any history of mathematics. It has been proved that
if a, b are coprime, the arithmetic progression ax+b, x =1, 2, «--
contains an infinity of primes. For many special e, b strictly elementary
proofs for the corresponding progressions have been given, and it seems
reasonable to suppose that sufficient elementary ingenuity would dispose
of any particular pair. However, the proof of the general theorem is by
advanced and somewhat delicate analysis. A general elementary proof is
a desideratum—either that or a proof that no such proof is possible.

3. Forms. Fermat proved by his method of descent that a prime p of
the form 4n+ 1 can be represented in essentially one way only as a sum
of two integer squares. This was one root of the vast and still expand-
ing arithmetical theory of forms. Form, without qualification, means a
homogeneous polynomial with integer coeflicients. A capital problem is to
determine what integers are representable in a given form when integer
values are assigned to the variables (indeterminates x, y, z, -+ ) in
the form. If the form is f(x, y, z, .-« ), the problem amounts to solving
f(x, y, z, . ) =m, for m given, in integers x, y, 2, --., or if for
certain m there are no integer solutions, proving that there are none.
An example of extreme difficulty is to prove or disprove the conjecture
that zero is not represented in the form x"+y" + z" by integers x, y, 2z
all different from zero when n> 2. The discussion of questions of this
order of difficulty is likely to demand the invention of new methods and
the discovery of new principles as this one, Fermat’s, did in giving
rise to the theory of ideals in algebraic numbers.

Much has been done for the case of forms of the second degree, and
for such forms in two variables there is a reasonably complete theory.
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For three or more variables the difficulties increase rapidly. In this
field the apparatus of linear homogeneous substitutions with integer
coeflicients and determinant +1 or -1 isone of keys to the main problems.
Forms transformable into one another by such substitutions are said to
be equivalent. A given form is transformed into a simpler equivalent; if
the theory of representations in the second form can be obtained, that
in the first follows. Much less has been done for forms of degree higher
than the second.

A famous result for forms of the second degree in four variables
states that every integer is a sum of four integer squares (zero included
as a possibility). Another, for forms of the second degree in three
variables, states that any integer not of the form 4¥(8n+7) is a sum of
three integer squares with no common factor >1. The first of these was
one germ of the current arithmetic of quaternions with integer coeflicients.
It may also have inspired Waring’s famous conjecture (?) that every
positive integer is a sumof a fixed number, g(k), of kth powers of positive
or zero integers. Thus g(4)=4; itis known that g(3)=9, and the general
theorem—the existence of g(k) for all k but not its exact value for all
k, notably for k=4 —was proved in the present century by the eflorts of
several mathematicians using different methods, none simple.

Another striking theorem, stated by Fermat in 1636 and proved by Cauchy
in 1815, asserts that every positive integer is a sum of m+ 2 so-called
polygonal numbers $m(x% - x) + x. Cauchy proved that all but four of the
m+ 2 can be taken 0 or 1. For m = 2 this is the four-square theorem.

The last suggests a seemingly simpler type of problem. In how many
ways can a positive integer be represented as a sum of unrestricted pos-
itive integers, or as a sum of restricted positive integers, such as all
0dd? Modernwork on this problememploys advanced analysis in the derivation
of asymptotic formulas. Such formulas are of frequent occurrence in sta-
tistical mechanics, where sometimes exact computation appears to be humanly
impossible, not to say unnecessary. This problem was one of the main
sources, in Fuler’s work, of the theory of the elliptic theta functions.

Another vast domain, Diophantine analysis, may be mentioned here,
although it is not usually thought of as belonging to the theory of
forms, possibly because a general theory of forms is yet to be created.
But it appears naturally enough when the restriction of homogeneity is
removed. The main problem here is to devise a method for deciding when a
given equation with integer (or rational) coefficients has integer (or
rational) solutions, and if it has, to find them all. Little of any
generality has been done in this direction.

4. Algebraic numbers. As this sketch began with divisibility, it
may fittingly close with a mere mention of a generalization of the theory
as sketched. A root of an irreducible algebraic equation of degree n is
called an algebraic number of degree n. If all the coeflicients are (ra-
tional) integers, and the leading coeflicient is 1, the roots are called
algebraic integers. For some classes of such integers the fundamental
theorem of arithmetic fails, and an integer may be a product of prime
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integers in more than one way. The fundamental theorem was restored by
the introduction of ideals. For anyone wishing to follow this development
excellent texts, mostly in German, are available. It is interesting and
instructive in studying this subject to observe how some of the seminal
concepts of modern abstract algebra appeared first in the theory of alge-
braic numbers. This is characteristic of the entire subject. Although its
direct contributions to the sciences have been few compared with those
of other departments of mathematics, the theory of numbers has supplied
those departments with methods, problems, and ideas that might not
otherwise have been imagined.

The April, 1949 issue of the Annals of Mathematics contains ele-
mentary proofs by Atle Selberg of the prime number theorem and
Dirichlet’s theorem on the primes in an arithmetic progression.
‘Elementary’ is a relative term. For the prime number theorem the sense
is that practically no analysis except the simplest properties of the
logarithm is used. For Dirichlet’s theorem complex characters mod k are
obviated and only finite sums are considered.

California Institute of Technology E. T. Bell
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MATHEMATICAL MISCELLANY
Edited by

Marion E. Stark

Let us know (briefly) of unusual and successful programs put on
by your Mathematics Club, of new uses of mathematics, of famous prob-
lems solved, and so on. Brief letters concerning the MATHEMATICS
MAGAZINE or concerning other ‘matters mathematical will be welcome.
Address: MARION E. STARk. Wellesley College, Wellesley, 81, Mass.

The letter of the month:

I should like to propose a query for the Mathematical Miscellany
you edit in the Mathematics Magazine. How many texts on Trigonometry
have been published in the United Staees since 1899? Editions later
than a first are to be counted as new tests. I believe the answer
can be found by any industrious librarian on consulting the standard
professional library equipment.

If and when this query is answered, another may be proposed. Why
so many?

Yours sincerely,

E. T. Bell

California Institute of Technology.

Editorial Comment:

Answers to, and comments on, the above are eagerly desired. And
shall we limit it to Trigonometry? All in favor of widening the scope
of this discussion will answer Aye. The Ayes have it.

Next we have a song written for a mathematics dinner by R. Lariviere
of Chicago. The tune is ‘Let me call you Sweetheart.’ Now, everybody
join in.

Oh, Miss Intuition, I'm in love with you.
You are always steady and I hold you true.
Let me call you Logic — one and one make two —
Oh, Miss Intuition, I'm in love with you.

I've liked wave mechanics, n-dimensions too.
Hyperbolic geodesics, they have thrilled me through.
But, Miss Intuition, they are not like you.

Let me call you Logic. I'm in love with you.
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Approximations to Square Roots

Two methods of taking approximate square roots are widely used.
1. Let a be an approximate value of Vx. Then a better value of

2
VX is ﬁ; + a] -~ 2. This is equivalent to using y = iﬁ—é—g-lin place
a

of the curve y = vx, and as the former may be written in the form

SZ_:_E%_ = J;, this method is equivalent to using the tangent to
(x - a®) 2a

y = ¥x at the point (a?, a). Since the parabola, y = vz, always lies

below its tangent, this method always gives too large a result. This

(x + a2) _
a

fact may be shown also by transforming VX to the fraction

(x + a%- 2a V%)
2a
therefore always positive.
It is worth while to note that this is the approximation to which

, whose numerator is the square of (a - vVx) and is

we are led by the binomial theorem. For if we have x = a® + z, we

2 2
— z 2 . . (x-a%)
etVx = g + = - «+., whose first two terms give Vx = a + ~=—""t,
& 2¢ 8" & %a

2. Take a and a + 1, the two integers nearest to vz, and inter-
polate. This is usually illustrated thus:

Va=2 Vs=21 Ve-22 V1-23 /g-24 /9-3.
5 5 5 5
The interpolation is equivalent to taking a chord instead of the curve
y = vz, and since the chord is always below the parabola, this method
always gives too small a root.
The algebraic formula for this method is obtained by taking two
numbers, a and a + 1, between whose squares x lies, and forming the

iguati?r of the line through (a?, a) and ([a + 112, a + 1), which is
Y- a 1

5= = . To compare this with the other method, reduce
(x - a®)  (2a¢ + 1)

- 2
to the formy = a + %g;—zﬂig. We may show that this is too small by
a

transforming a + %%—::QT% - VX to the fraction
a

(22 + a + x - a%2 - 2a /% - V%)
(2a + 1) ’

whose numerater may be written (a-vx)%+ (a-vx), or (a+1-vx)(a-Vx):
the first factor is positive and the second is negative.

- 2 _ 2
The two forms, a + 15—5—3—2 and a + %%——:QI% are particularly
a a
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valuable because of their resemblance and because they shut in the
value of Vx between limits. The fact that a curve lies between its
chord and its tangent is often useful in making approximations.

Tufts College William R. Ransom

We think the following article will be of interest to readers.
It is said to be the work of a fifteen year old boy. Would that more
of this sort of thing might come out of our high schools. The boy
is a second year student at the Stuyvesant High School in New York City.

In the article in formula VI the superscript on the second sigma
should be x rather than n. Mr. Towber's c¢(x) is the Kronecker delta,
8(c,x). He has, therefore, one representation of &§(c,x).

A Formula for the nth Prime

The simplest way to obtain a function of n that will yield the
nth prime (where n is any whole number) is to compound suitably simpler
functions of n which have certain special properties. In order to
determine the form these are to have, a definite plan of attack must
first be formulated. The one I chose is here outlined.

One way of regarding p,, the nth prime, is as the sum of an infinite

series all of whose terms are zero except the one term p, . Thus, if

we can construct a function p"(x) differing from zero only when x = E;

and equalling unity for that value of x, we can express p,  in the
[+
£ > ip (i),
orm 2 p, (1)

Only three auxiliary functions will be needed in the construction
of ;:.(x)
(a) A function é(x) such that
(1) ifx = ¢, &(x) = 1, and
(2) if x £ ¢, &(x) = 0.
(b) A function D(x), giving the number of divisors of x.
(c) A function L(x), giving the leccation of x in the prime se-
quence, if x is prime. For non-prime values of the argument, our
function is to vanish.
I shall discuss these functions in order:
first, the function

I. c(x) = lim has the properties of c(x) in (a) above,

Z-c+x
for
. R S 2
(1) ifx=c¢, }_1.812_0 . }_I,b“z 1, and
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oz ooz 0
}38'z+(x—c)=,1_1.5'z+d’0+d'°-

Secondly, since sin 7x= 0 if and only if x is a whole number, the
function &(sin7 x)[where c¢=0, and é(x) is defined as in (a)] is evi-
dently 1 for integral values of x, and zero for all other values.

2
This function may be put in the form 118 2+ sinmx DY direct substltu-

tion in the results of I above. Since i divides m if and only 1f a
whole number, we have the useful result:

II. lim Z one or 0, according as i does or does not
20 ; 4 sin 1B

3

Z vanishes for all i except divisors of

i
i

divide m. Since lim
z=0 .
z + sin

m, any terms of this form in a sum will drop out for non-divisors
i of m. Thus, since there are exactly as many ono-zero terms in the

as there are divisors of m, and each of these

sum Z lim
= - .

i=1 270 z + sin E?

non-zero terms equals unity, it follows that this sum yields exactly

the number of divisors of m, that is, if D(x) is defined as in (b)

above, we have

L 2z
III. D(m) = 2 lim

1=1 z=0

z + sin g?

A number is prime if it has exactly two distinct divisors (itself,
unity, and no others). Therefore, by combining equations I and III,
we can show easily that p is prime or non-prime according as

IV. lim ~ =1 or 0.
A E lim

i=1 r-o0

mm
r+51n—i—

Reasoning exactly as we did in the preceding analysis, we may now
show that

»
V. % lim Z equals the number of primes

P=1.270 ; - 24+ 5 lim
i=1 r=0 r + s].nm

not exceeding m, Now, if'm is prime, thls function is exactly L(m),
the function defined in (c). On the other hand, if m is non-prime,
our function does not vanish. In order to ensure its evanescence for
non-primes, we shall multiply by the function IV. For non-primes,
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this assumes the form (a finite number) times zero, and the product
vanishes. For primes, however, it takes on the form (1) [L(x)] = L(x).
In other words, we have obtained the following expression for L(x):

n
VI. L(x) = [ lim —2 ]L; lim ——p—2 ]
20 -2+ 3 lim —TLG_JP7"T 70 00 S lim —T
i=1 720 rygin IX i=1 r~0 p=2+gin 2
i i

Having obtained our auxiliary function, we can now write p, (x).
Indeed, referring to the definition of pn(x), we see that pn(x) =

-—_
z - n+ L(x)
Finally, we obtain the nth prime in the form

lim where L(x) is given by VI.

®
Pp = i‘f‘, ipn(i) }

[ )
2 ilim zZ .
i=1 z=0Q 2-n+ [lim . r ]%E lim . r ]
"0 (r=2)+ 3 lim —S— "' 70 (7~2)+ 2 lim ——S T
J=1 820 s+gigft J=1580 s4gin T2
J J

Jacob Towber

Dear Professor James;

I have been thinking some more about the project I tentatively
proposed in my last letter since I learned that you had already been
cogitating along similar lines,— something of a Mathematical Forum
or Mathematical Soundingboard. This department would publish letters
either signed or anonymous dealing with nontechnical matters in the
mathematical world. The letters could be aimed at improving certain
mathematical situations but should be strictly impersonal. We could
get a freer expression if we allowed anonymous letters but of course
there are objections to this. My guess is that subscribers alone
would provide more letters than we could publish. If the letters
are non-tecnical then even people with no mathematical training
could find them interesting and enjoyable. My talks with colleagues
convince me that most mathematicians have something that they would
like to express an opinion about and it is entirely possible that
some good might come of such a program. Once a few controversial
matters appear in print, I believe we would get a lot of action in
the form of expressions of opinion. What would you think of asking
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our readers if they would like to have such a department?

As ever
H. V. Craig

I would like very much to have the reactions of our readers to
this suggestion.

Glenn James

(Continued from inside back cover)

Harold Everett Bowie, Associate Professor of Mathematics and Dept.
Head, American International College, was born on January 23, 1901
in Durham, Maine, and attended the University of Maine (B.A.’28;
M.A.’ 32). He was administrator and teacher in the public secondary
schools of Maine from 1921 to 1936 and was instructor in Mathematics
at the University of Maine before taking a position at American
International College in 1938. His chief mathematical interest is
in analysis.

Biographical sketches of E. T. Bell and Pedro A. Piza were published
in vol. XXI, no. 2. Gordon Raisbeck’s sketch will appear in the next
issue.
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